WY DL

VOICE

Web Services API —
Programmer’s Guide

(version 3.1.133)

2 Web Services API
Programmer’s Guide

Disclaimer

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN
THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL
ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE
ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET
THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY
THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR WYDE VOICE REPRESENTATIVE
FOR A COPY.

IN NO EVENT SHALL WYDE VOICE OR ITS SUPPLIERS BE LIABLE FOR ANY
INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES,
INCLUDING, WITHOUT LIMITATION LOST PROFITS OR LOSS OR DAMAGE TO
DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN
IF WYDE OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Copyright

Except where expressly stated otherwise, the Product is protected by copyright and other
laws respecting proprietary rights. Unauthorized reproduction, transfer, and or use can be a
criminal, as well as civil, offense under the applicable law.

WYDE Voice and the WYDE Voice logo are registered trademarks of WYDE Voice LLC
in the United States of America and other jurisdictions. Unless otherwise provided in this
Documentation, marks identified with “R” / ®, “TM” / ™ and “SM” are registered marks;
trademarks are the property of their respective owners.

For the most current versions of documentation, go to the WYDE support Web site:
http://docs.wydevoice.com/

May 23, 2013

http://docs.wydevoice.com/

3 Web Services API
Programmer’s Guide

Symbols and Notations in this Manual

The following notations and symbols can be found in this manual.

Denotes any item that requires special attention or care. Damage to the
equipment or the operator may result from failure to take note of the noted

instructions
Figure Denotes any illustration
Table Denotes any table
Text Denotes any text output

Button Denotes any button caption

4 Web Services API
Programmer’s Guide

Table of Contents
Symbols and Notations in this Manual.............ccceeeeiiiiiiiieniiieieee e 3
Table Of CONLENLSeeiieiiiiiieiieie ettt sttt be b st e b eaeens 4
TADIES LIST ..ttt ettt ettt ettt st e b et eteas 7
FAGUIES LIST..eeniiieiiieeiieeiie ettt et ettt e st e et e e st e esbeessaesaseeenaeenseeenns 8
Chapter 1: INtrOQUCHION.ccciiiiiiiectieeciee ettt e e ae e s estee e ssaeeesbeeensseeensseeenns 9
ASSUMEA SKILLS ..ottt 9
WED SEIVICES ...ttt ettt ettt e b e et e st e e bt e s abeenbeesaeeans 10
DIEEINILIONS ..ottt et b et ettt et nbe et nae e 10
Chapter 2: Data StIUCTUTES.ueeieuieeeiiee ettt e eiteeeeeeeee e st e esaeeessbeeessaeeessseeessseessseessseesnneens 14
General Data SIUCUIEccuieiiieiieie ettt et b et e e e 14
Data Classes (ENTITIES)....ccuieeriieiiiieeiiie et et estee et eesteeesteeeseaeeesaeeesaeesnsaeessseeesaseeenns 16
SUDSCTIDET ...ttt ettt et sttt ettt e st e b enees 16
Conference Account — Conference User (CONfUSET).......ccceeevveerieeerieeeniieenieeeree e 16
Conference Info (ConfInfo)........cccuiiiiiiiiiiiiccieceeeee e 17
DN ettt ettt et eae et e e e st et e et e e ne e et et e e st e eaeenteenteeneebeenten 17
DNIS AlIas (DNISATIAS).....uviiiiiieeiiieeeiieeeiee ettt ettt e e eareeeaee e s veeeeaeeeeareeeeareeenns 18
(O 11 2 (O (O 1 1 (o) USSR 18
ABEEIDULE ...ttt et b et sttt et nb et 18
CONTRIEIICE ...ttt ettt et e st et e e st e e bt e s steebeesaeeebeeeaee 19
Operator Status (OPeratOrSTATUS).......c.eereerruierieerierieeieesteereesereereesteeeseeneeesseenseeenne 20
ConferenCeDRcc.oiiiii e e 20
Custom Extension (CustOmMEXtENSION)........cccviiiuiriiiieeiiieeciiee e 21
Polling Result (POIINGRESUIL)ceeuiiiiiiiieiieceece e e 21
Operator’s Statistic (OperatorStatiStiC)ccueerveeriierieriieriieeieeriee e eiee e siee e 22
RIS 101 F USSR PORTUOPRRP 22
SESSIONDIR ...ttt st 23
SUDBSESSIONDIR ...ttt et st 24
SESSIONEVENL.eutiiiiiiiiiieteee ettt ettt st sbe e st e b et 24
DTMF Event (DIMIEVENT) ..ccveiiiiiieciiiece et 25
Subscriber Conference (SubscriberConference)coceeeevveevieieiiieecieecieeeee e 25
Dialout Subscriber (Di1aloutSubSCIIber)cc.eveviiiiiiiieeiieeee e 26
Chapter 3: Samples Of FUNCLIONS.........ccouiiiiiiriieiiieieeieere ettt 27
WYDE Web Services Initialization...........cccooiiiiiiiiiiiiiiiieiieeie e 27
Sample of WYDE Web Services Initializationcccueeviieniieriienieeniienieeee e 27
Web Methods’ XML Requests and RESPONSESceecvveeeriiieeiiiieeiiieeieeeiie e 27
Sample of XML for Function with Multiple Parameters Sent and List of Objects
RECEIVEA ...ttt ettt st be e e ee 27
Sample of XML for Function with the Object Parameter Sent and the Object Received
.. 28
SubSCribers ManagemENLt..........cccuieriieiiieriieiieeieeieeeteettesreeteesateebeessbeesseesaseeseessseeseas 28
Sample of Subscriber and his Conference Accounts Creation...........cccceeeeevveeeveeennnenn. 28
Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications28
Sample of Subscribers Filtering and Deletion............c.cccveveiieniieciieniiieiiecieeee e 29

Sample of Getting Conference Users Informationc..cceceeveevveninninicncnncnecneenne. 29

5 Web Services API
Programmer’s Guide

Conferences and Calls Managementcccueeeeiieeriieeniieeiieeeeeeeeeeeereeeeaeeesveeesvee e 29
Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences 29
Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A

Sessions and Conference Recordingcceecuieriieiiiiniieniienieeiecie e 30
Sample of Conference Polling SESSIONScccvuiieiiiieriieeiiie e 31
Sample of Calls Filtering, Mute the Calls, Dropping the Calls...........cccccecuverieenennen. 31
Sample of Setting Custom Name and Placing Calls on Holdccccoevviiiinnnnnnn. 31
CDRS MaNQZEIMENLeeiiiieiiiieiiiiieeriieeeiiee et e et e st e e st e esbeeesabeeesabeesaaeesaeeesnareesseeens 32
Sample of Getting Conferences Historical Information............cccceeevveveieeiniieecneenneen. 32
Sample of the Shared Recording Generationcecceeeeereenienieneenieneeneesieneeseeene 32
Sample of Getting Calls Historical Information.............ccceeevvevieeciienieicieeniecieecee e 33
Sample of Historical Calls FIlteringcccccoveeviriiiniininiinieeeiceeceeeseeeeeeee 33
Active Speaker NOtHICAIONeieuiieeiiieciieeciie e et eaee e es 33
SEOTAZE LIDTATY ..ottt ettt sttt st 35
Showing Folder Content for Conference Files..........ccccooeuiiviiiiiiniienciiiiecieeeeeeeenn 36
FAle Uploadoooiiieee et e 39
Files Mana@emeENt........c..cccvieruieiiieiiieieeriie ettt et see et e vt e seaeeteeeabeeseessseensnesnseens 39
Chapter 4: Function Reference...........cocueiiiriiiiiiiiniiiiicieceeeeteeee e 42
SubSCribers ManageMENL..........cccuieiiieiiieriieiieereerieeeteeteesreesteesteeseeesseeseessseesseessseesnas 42
Subscribers’ Conference Users Management..............coeevuereeneenieniineenienieneeneeeeenieenees 45
Conference Info Managementcccueeeiiieiiiieeiiieeieeeite et eee e eee e e e e eesaeeeens 48
Conferences and Calls Managementc.ccecveveereriinienienieneeeeteeeee e 50
Subscribers’ Conferences Managementc.eeeeerveeriierieenieenieenieeereesseeeseesseesveessens 64
CDRS Managementcc..oovueeriiriiiiieiieenieete ettt ettt ettt ere e 67
Call Flow and DNIS Managementcc.eeeueerieeniieneeeiiienieeieeneeeseesseesseenseesseessessnns 80
Backend and Frontend Services Management...............coeeverienieneniieneenienieneenieeeeneens 84
25 (1S] 0110) 1 USSR 86
COMSLANLS ...ttt ettt e st e e sab e e e bt e e e bt eeeabbeesabeeesabeeeeabeeenabeeenas 86
Appendix A: Code SAMPIEScceeeviiiiiieiieieeieee ettt ettt et eaaeens 88
WYDE Web Services InitialiZation.............ccoeiuieiiieiiiiniiiieiieeee e 88
Sample of WYDE Web Services Initializationccceeeieriieiiencieenieeeieeiee e 88
APP-CONTIZ ettt ettt et et e et e st e e bt essteenbeesateenseennes 90
Web Methods’ XML Requests and RESPONSEScc.eevveeeiieriieiieniieiieeie e 91
Sample of XML Request for Function with Multiple Parameters Sent 91
Sample of XML Response for Function with List of Objects Received...................... 92
Sample of XML Request for Function with the Object Parameter Sent...................... 94
Sample of XML Response for Function with the Object Receivedc.cccuvenneeeee. 95
Subscribers Management.coeecuerierieieriinieientesie ettt ettt sae e 100
Sample of Subscriber and his Conference Accounts Creation
(Sample ManageSubsCriDEr])ccccooiiriiriiniiiiiieieeeeeeee e 100
Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications
(Sample ManageSubSCrIDETI2)ccccoeeriiriiriiriiiieieie ettt 103
Sample of Subscribers Filtering and Deletion (Sample ManageSubscriber3) 106
Sample of Getting Conference Users Information (Sample ManageConfuserl)...... 107
Conferences and Calls Managementccceeevveerieeeiienieniieenieereesieeeveeseeeeneesseesnveas 110

Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences
(Sample ManageConferencel)cc.eevieeiiirieeiieiie ettt ens 110

6 Web Services API
Programmer’s Guide

Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A

Sessions and Conference Recording (Sample ManageConference2)........................ 113
Sample of Conference Polling Sessions (Sample ManageConference3).................. 116
Sample of Calls Filtering, Mute the Calls, Dropping the Calls (Sample ManageCalll)
.. 118
Sample of Setting Custom Name and Placing Calls on Hold (Sample ManageCall2)
.. 121
CDRS ManNQEMENLeeeruiiiiiiieiiiieeiieeeiiee ettt e st e st e e st e esabee e abeesaaeessaeesneeesnseees 123
Sample of Getting Conferences Historical Information (Sample InfoConferenceDR1)
.. 123
Sample of the Shared Recording Generation (Sample InfoConferenceDR2)........... 125
Sample of Getting Calls Historical Information (Sample InfoSessionDR1)............. 127
Sample of Historical Calls Filtering (Sample InfoSessionDR2)..........c.cccceeevvennnnee. 130
Appendix B: SUppOrt RESOUICEScc.eviiriiiiiiiiiiiieiictceerteeeeet s 132
SUPPOrt DOCUMENLATION.....c.utieiiiieeiiie ettt et e e sbee e sebeeesnbeeeenseeenes 132
WED SUPPOTL ...ttt sttt ettt 132
TelePhONE SUPPOTL....ccviiiiiiiiieiieie ettt ettt e et sa e et e eebeeseeesbeesseesnseenenas 132

Email SUPPOTL ..ottt st 132

7 Web Services API
Programmer’s Guide

Tables List

Table 1: Properties 0f SUDSCIIDETc..eiiiiieeiiiecieeeee ettt 16
Table 2: Properties 0f CONTUSET........cc.eiiiiiiiiiieeiieee ettt ettt et ens 17
Table 3: Properties of ConfInfo.........cccoeeviiieiiiiiiiieceeee e 17
Table 4: Properties Of DNISoooiiiiiiee ettt et ens 18
Table 5: Properties 0f DNISATIAScccueieiiiiiiiiecieeee et saee e 18
Table 6: Properties Of CallFLOWc.cooiiiiiiiiiiiiieie ettt 18
Table 7: Properties 0f AIIDULEcccueieiiieeiiieccie et e e erae e eaeeeeeree s 19
Table 8: Properties 0f CONTETENCEc.eecuiiriiiiieiieeiieeie ettt ens 20
Table 9: Properties of OperatorStatuscccuveeiiieeiiieriieeeiie et saee e 20
Table 10: Properties of ConferenceDRcccccoiviiiiiiiiiiiiiiiieeee e 20
Table 11: Properties of CuStOMEXtENSIONveeeiviieeiiieeiieeciieeeiee et 21
Table 12: Properties of POIIINGRESULL...........coociiiiiiiiiiiiieiiecce e 22
Table 13: Properties of OperatorStatiStiCcouieerieeeiiieeiieeriieeeieeesieeeeve e e e ereeeeaeeeseneees 22
Table 14: Properties 0f SE@SSIOMNccvuiiiiiiiiieeieeiieeie ettt ettt et sae e e saeenseeeaaeens 22
Table 15: Properties of SeSSIONDR.........cccouiiiiiieiiieceece e 23
Table 16: Properties of SUDSESSIONDRcccoiiiiiiiiiiiiiieieee e 24
Table 17: Properties of SeSSIONEVENL..........ccciiiiiiiiiiiecieece et 25
Table 18: Properties of DEMIEVENL.ccciiiiiiiiiiieiieeeeee e 25
Table 19: Properties of SubscriberConference..........ccvevvvieeiiieeeieeeniie e e 25
Table 20: Properties of DialoutSubSCIIDETcccviiiiiiiiieiiieiieee e 26

8 Web Services API
Programmer’s Guide

Figures List

Figure 1: The Web Services ATChIte€CtUreoecvvieeciieeiiieeciie ettt 10
Figure 2: The UML Class DIagram...........ccceeeuieriiieiiienieeiienieeiieiee et saeeieesveesseesaneens 15
Figure 3: Folder Content SAMPIEcceciiieiiieiiiiecieeecee ettt srae e saeeeeevee s 37

Figure 4: Folder (/ist command) JSON Data Sample..........cccceeviieriiiiiiniiniieieeieerieene 39

9 Web Services API
Programmer’s Guide

Chapter 1: Introduction

WYDE conferencing bridges (like SB-HD100, SB-HD1000, and SB-HD10000) provide
different API that allow manage conferences and calls, configure subscribers and their
conference account, maintain DNIS and call flow management. The basic APIs are
e web services API,
e RT (real time) interface,
e different adapters, for instance
o billing adapter that allow writing calls and conferences information to an
external database,
o authentication adapter that allow user authentication based on external
database), etc.
This document is programmer’s guide for the web services API only. Other APIs are being
described in the separate documentation.

Please note that if call flow is setup to use external authentication server (like RADIUS)
user management API should not be used.

WYDE web services API is designed to query and manage calls and conferences happening
on the bridge, manage subscribers and their conference accounts. Through the API you also
can manage users and access code used for local authentication. API helps to get
information not only in real time mode, but also happened in the past.

The URL for the WYDE web services is https.//<Wyde bridge
domain>/dnca/jAdmin?wsdl. In some languages to point to WYDE web services you may
need to use URL without “?wsd[” suffix: https.//<Wyde bridge domain>/dnca/jAdmin.
Here <WYDE bridge domain> is either the registered domain name or IP address that gives
the destination location for the WYDE web services URL. For instance the possible WYDE
web services URLs could be https://www.yourcompanyname.com/dnca/jAdmin?wsdl or
https://192.168.1.30/dnca/jAdmin?wsdl.

This Web Service Interfaces — Programmer’s Guide is based on WYDE web
services API version 3.1.133. If you use another version of API the same
functions may be different and you may need other version of the guide.

You can check the version of your software using the following URL:

https://<Wyde bridge domain>/version.html. For instance the possible WYDE software
version URLs could be https://www.yourcompanyname.com/version.html or
https://192.168.1.30/version.html.

Assumed Skills

This programmer’s guide assumes you have a working knowledge of the following
technologies and skills:

e PCusage

10 Web Services API
Programmer’s Guide

System administration

Programming basics (in some kind of programming languages)
Understanding of object-oriented classes structure, UML basics
VOIP basics

TCP/IP networking

Web Administration Interface — User Guide

Web Services

Formal Web Service definition is given by World Wide Web Consortium (W3C) — the
main international standards organization for the World Wide Web. According to W3C, a
web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.

Web services architecture is shown on Figure 1.

Service
Broker

e P \UDD}

WSDL, 'wsbDL,

Service Service
Reguester Provider

Figure 1: The Web Services Architecture

Web services are platform independent. Web services are based on open standards and
protocols. Web services are supported by most major software vendors and industry
analysts. You can access WYDE web services from different platforms and from different
programming languages.

The detail information about web services can be read in the following articles:
e Web Services Architecture — http://www.w3.org/TR/ws-arch/

e Web Services Activity — http://www.w3.0rg/2002/ws/

e Web Services Glossary — http://www.w3.org/TR/ws-gloss/

Definitions

In order to discuss the WYDE web services API effectively, we need to have a common set
of terminology. For this purpose, we should definite the dictionary for the terms you will
see throughout this programmer’s guide:

http://www.w3.org/TR/ws-arch/
http://www.w3.org/2002/ws/
http://www.w3.org/TR/ws-gloss/

11

Web Services API
Programmer’s Guide

Class — A programming language construct that is used as a template to create objects
of that class. This template describes the state and behavior that the objects of the class
all share. An object of a given class is called an instance of the class. The class that
contains that instance can be considered as the type of that object. The classes that are
designed in the web services API are Subscriber, Call Flow (CallFlow), DNIS,
Conference Account/User (Confuser), Attribute, Conference Info (Conflnfo), Session,
SessionDR, Conference, ConferenceDR.

Identifier — A unique key to uniquely identify each instance of the class. In WYDE
web services API data structure, the identifier is the single property value, usually it is
numeric (long) identifier (ID). Identifier can be used to retrieve information about the
single instance of the class; the WYDE web services API contains methods get<Class>
(for instance getSubscriber, getDNIS, etc.) that are used to get single instance of the
class using the transferred parameter — the identifier of the object instance.

Reference Identifier — A referential constraint between two classes that is used to join
the classes. The reference identifier identifies a column or a set of columns in one
(referencing) class that refers to a column or set of columns in another (referenced)
class. The columns in the referencing class must be the identifier. The values in the
referencing columns of one class instance must occur in a single instance in the
referenced class; an instance in the referencing class cannot contain values that don't
exist in the referenced class. In other words these constructs are being used to join the
classes and the instances of these classes. For instance Confuser class has reference
identifier subscriberld; the values of this attribute allow join different Conference User
objects with Subscribers, who own these Conference Users.

Subscriber — A real person, he has a name, phone number, e-mail address, etc. The
subscriber can have conference accounts, he does not have access codes, but access
codes are properties of conference accounts that have subscribers. Note that non-admin
(non-operator) subscribers can see only “own” information, i.e. his information and
information that belongs to subscribers created by him, he can see only their calls,
conferences, the reports will show only their data, etc.

To describe subscribers web services API has the class Subscriber; the identifier of this
class is subscriberld; the following classes have reference identifiers to the Subscriber
class: Confuser, Session, SessionDR, i.e. they are joined with Subscribers; Subscribers
can own conference accounts (conference users) information.

PIN — The login ID for the subscriber (must be unique). It can be used either as login in
Web Administration Interface (in this case it can be either number or alpha-numeric) or
as login for some call flows (in this case must be numeric) for participants
authorization.

Conference Account — The element of subscriber conferences configuration.
Conference accounts always belong to subscriber. It is being used to define a person in
a conference with a particular role (e.g. host, participant, listener, etc.), the DNIS
number that should be used to call to the conference, and the access code that should be
entered by the user that called to the conference DNIS to determine his role. A
subscriber could be a host user in one conference and a listener in another. Conference
accounts with the same conference number represent single conference setup.

12

Web Services API
Programmer’s Guide

To describe conference accounts web services API has the class Confuser (Conference
User); the identifier of this class is confuserld; this class has reference identifier to the
following classes: Subscriber, DNIS, Conflnfo, and set of Attributes.

DNIS — A unique set of numbers that is outpulsed by a phone carrier that indicates the
intended destination for a particular call. It can be any length digits (although usually 10
digits). DNIS is the property of the conference account, but different DNIS numbers
can be used to connect to the same conference.

To describe DNIS web services API has the class DNIS; the identifier of this class is
dnisld; this class has reference identifier to the CallFlow classes and set of Attributes;
the Confuser class has reference identifier to the DNIS class.

Access Code — A numeric code unique for DNIS that allows a host or participant or
listener access to a conference call. When users call to DNIS number they being asked
to enter their access code. The access code determines the conference and the user role
in the conference. Different access codes can determine the same conference, for
instance one access code can determine the connected user has host role, another access
code can determine that connected user has participant role, and another access code
can determine that connected user has listener role.

Host — A user in the conference call that can make changes to the system while the
conference call is in progress. Like change the security setting, change who can talk or
answer, etc. Sometimes the host user is called moderator. This user role is defined in
conference account.

Participant — A person in the conference who can actively participate in a call by both
talking and listening. This user role is defined in conference account.

Listener — A person in the conference who can hear the conference call, but cannot
speak. Their audio path is one way only (receive). This user role is defined in
conference account.

Conference Number — A unique external conference number. Conference number is
the property of conference account. If the conference accounts have the same
conference number all these accounts determine one single conference. For instance the
user can create one conference account record that determine host role, another
conference account record that determine participant role, and another conference
account record that determine listener role — all these records should have the same
conference number to determine one unique conference.

To represent unique conference (conference number) web services API has the class
ConfInfo (Conference Info); the identifier of this class is conferenceNumber; the
following classes have reference identifiers to the ConfInfo class: Confuser, Session,
SessionDR, Conference, ConferenceDR, i.e. they are joined with specific conference
information.

Conference ID — A unique conference ID that represents the instance of a conference.
When any conference is being started it receives unique conference ID, and all calls to
this conference have the same conference ID; if this conference has been completed and
another conference is being started that conference will receive another conference ID.
Conference ID is normally not exposed to users, unless on the reports.

Call Flow — A unique conference service setup, the logic that is used to process the
conference calls. This is the process a call goes through from call setup to, to
processing, to call tear down. It includes the logic, DTMF key-presses used, functions,

13

Web Services API
Programmer’s Guide

and the recorded prompts. There are two basic call flow categories: call flows without
authentication and call flows with authentication.

To describe call flows web services API has the class CallFlow; the identifier of this
class is callflowld; this class has a set of Attributes; the DNIS class has reference
identifier to the CallFlow class.

Attribute — In terms of WYDE web services API, a data structure is used to carry
attributes for call flow (CallFlow), DNIS and conference user (Confuser). The attributes
skeleton is defined by call flow; other attributes can only override some of them, so for
instance when a user called in to the conference DNIS it gets attributes exposed by the
call flow, but some of these attributes can be already altered by the DNIS. Each
attribute has name, type, value, and role. The names of the attributes are unique;
CallFlow, DNIS, and Confuser classes have a set of Attribute objects associated with
them.

Conference — A data structure is used to describe ongoing conference on the bridge.
Objects of this type are only created by server. User may fetch these objects by calling
appropriate function. When conference is over the conference object is deleted by the
server.

The conference object is identified by the conferneceld property value, this is a globally
unique identifier that represents the instance of a conference; this class has reference
identifier to a ConflInfo class (conference number); SessionDR class has reference
identifier to the Conference class.

ConferenceDR — A data structure is used to describe conference which is already
terminated on the on the bridge. User can not directly create this object.

The conferenceDR object is identified by the conferneceld property value; this class has
reference identifier to a Conflnfo class (conference number).

Session — A data structure represents a single ongoing call on the server. User can not
directly create this object. When the call is over server automatically deletes this object.
Normally this data structure is used to get information about call attributes like
calling/called number etc., or do something with the call, for instance mute, hang, hold
etc.

The identifier of the Session class is sessionld; this class has reference identifiers to
Subscriber and Conflnfo classes.

SessionDR — A data structure represents a single call on the server which is already
terminated on the on the bridge. User can not directly create this object.

The identifier of the SessionDR class is sessionld; this class has reference identifiers to
Subscriber, Conflnfo, and Conference classes.

14 Web Services API
Programmer’s Guide

Chapter 2: Data Structures

General Data Structure

The class diagram, data classes (entities) and relations between them are shown on Figure
2. Boxes on this figure are representing data classes (entities), these classes will be
described in the next section of this guide; names of the classes are shown in bold,
identifiers are shown in blue color, reference identifiers are shown in green color,
encapsulated properties are shown in brown color, references (relations) between
classes are shown with black solid arrows, encapsulations (aggregations) between classes
are shown with brown dash lines ended with diamonds, related class data (data that can be
retrieved using the related class identifier) are shown with brown dotted lines ended with
diamonds. In data classes description fields that were added, adjusted, renamed, etc. in
version 3.x and/or did not exist in previous versions are noted as (*v3).

15

Web Services API
Programmer’s Guide

String jobCode
String nodeName
long gainlewvel
String subconference

int disconnectInitiator
String disconnectReason
String bridgeName
String jobCode

String nodeName

SubscriberConference

Conference conference o
Subscriber subscriber

DialoutSubscriber

String accessCode

P P IPEP IR P PP PP PER PR

String customName
String dnis
String phoneMNumber

Figure 2: The UML Class Diagram

1 t Subscriber
L DNIS —
=l # long subscriberId |— / 1 =% DmnisAlas
2 ——® Confuser[] confusers = ™ 1':"_]9 dr_]lSId s |
=1 Date created | Dtlsmfasil aliases T String mask
I H String pin I lotg.c.:ll_l::mId : String description
£ I String password \ Attribute[] attributes |[--—
: long role | gtr:i.ng :id o
£ : tring description
P | |6 |imaimesesnd ! CallFlow
: | : String firstName]
H b String lastName |
il H String email | e
g H String phoneNumber 1 .F.t,t,r:l.but,!a[]
i] 2 String addressl | attributesTemplate
: String address? I St,r:f.ng name
i i String city I String path
i : String country I Confuser
e String state I
i String zip I long confuserId g
i : String details : ‘*~| long dnisId Attribute
i i long subscriberId
H - s e == = ==y ConfInfo conferencelnfo ~—= String name
. el OperaturSlatlstlc Date created I String value
H String accessCode | 1 1
H String accessCode) 1 et r? i
A 3 ~ N long role long type
HL s e T : | String emmmValues
R long answersTime :] ¥ E
iy long avglnswerTime : I boolean isOverridden
il long conferencelumber : 1
- String name Sessssassssssssssssssnsasnnnannnnnnnnnnrnnnnnnnrnnannnny |
L long timefnline ConfInfo
i lono timeWait
L
iy Conference long conferencelumber
i Attribute[] attributes
£ long conferneceld String description
P el _ long conferenceNumber
| DtIIle‘EIIt Date created
i long duration
: H Date created E long isOmHold
Pl : String dtmf H boolean isPolling
B boolean isRecording = Dperatanlatus
- boolean isSecured 1
E : : long muteMods i long
A SESSiUII OperatorStatus 1 Engaged.._.pnference}hmber
1 operatorStatus e boolean :!.s..,Dnr.:ect,gd
; : e S Serany long participantCnt boolean isMonitoring
2 L long conferenceNumber long gaMode lomg Status
x leong subscriberId H e :
iy Date created :
: Date joined] Is=ss=s=== = ERE .
: ! 3
: long duration : g PU“.I.IIgRESIIIt
i String accessCode SessionDR
iy long role H I H Date created
: H i : 3 .
i boolean isMuted : long sessionId 1 : Map<chject, object>
i boolean isOmHold long conferenceld 1 rotes
3 boolean isOnHoldSelf H R T S I
i1 long status long subscriberTd |
il long gaStatus Date created I H
i String operatorMode Date joined I :
il String addressFrom long duration [T = ConferenceDR
I String addressTo String accessCode 1
: Strj.ng czllee long role] long conferneceld
- String caller String addressFrom | long conferencelumber
i String customName String addressTo I Date created
il String codec String callee I long duration
(lonz_; conngct,:l.onSta.t,us String caller 1 lomg participantCnt
N String bridgeName String customlName : String recordingUrl
il 1
il 1
il i
i !
il i
il
Y
|
il
i
i

boolean
hasPollingResults
Date expirePeriod
boolean hasRecording
long recordingDurration
String
sharedRecordingUrl
String jobCode
long
webRecordingDuration
long webRecordingStatus
String webRecordingUrl

16 Web Services API
Programmer’s Guide

Data Classes (Entities)

Subscriber

This data structure holds information about subscribers. Subscriber is a real person; he has
a name, phone number, e-mail address, etc. The subscriber can have conference accounts,
he does not have access codes, but access codes are properties of conference accounts that

have subscribers. Subscribers should make a hierarchy — that is why each subscriber has
reference to another subscriber who created it. Subscriber which doesn’t have a parent -
called Administrator. Note that non-admin (non-operator) subscribers can see only “own”
information, i.e. his information and information that belongs to subscribers created by
him, he can see only their calls, conferences, the reports will show only their data, etc.

Table 1: Properties of Subscriber

String addressl
String address2
String city
Confuser|[] confusers

String country
DateTime created
String details
String email
String firstName
String lastName
long parentId
String password
String phoneNumber

String pin

long role

String state
long subscriberId
String zip

Subscriber’s address

Subscriber’s city
List of confusers this subscriber associated with. It can be
populated by user during subscriber

Date when record is created; assigned by the server

Any additional details

Subscriber’s e-mail

Subscriber real first name (*)

Subscriber real last name (*)

ID of parent subscriber (*)

password for the logging in to the web interface (%)
Subscriber’s phone number used if server needs to dial-out to
this subscriber

pin for the logging in to the web interface (*)

pin should be unique among all subscribers on the server

if pin is used to identify subscriber in a callflow it should
consist only digits

Subscriber’s role (i.e. admin, operator, regular user, etc.)
Possible values: ROLE_ADMIN (1L), ROLE_OPERATOR (2L),
ROLE_USER (3L)

Subscriber’s state

Unique ID assigned by the server

Subscriber’s zip code

* — for this and all subsequent classes designates mandatory fields during object creation or

modification

Click here to see subscriber XML and class definition.

Conference Account — Conference User (Confuser)

Conference user (Confuser) class represents conference account, described in web
administration interface guide.

Conference account is the element of subscriber conferences configuration. Conference
accounts always belong to subscriber. It is being used to define a person in a conference
with a particular role (e.g. host, participant, listener, etc.), the DNIS number that should be
used to call to the conference, and the access code that should be entered by the user that
called to the conference DNIS to determine his role. A subscriber could be a host user in
one conference and a listener in another. Conference accounts with the same conference
number represent single conference setup.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_Subscriber.htm

17 Web Services API
Programmer’s Guide

Additionally, it is possible to override some attributes exposed by default callflow so this
Conference user has a customized behavior (For example this user can disable entry tones
just for him while all other users on this number still have them on).

Conference user object can exist only if there is the subscriber that own this confuser and if
this conference user assigned to DNIS and if this conference user has conference info
(conference number) information that is referred by him. Thus subscriber deletion, DNIS
deletion, conference info deletion performs cascade delete of all associated conference
users.

Table 2: Properties of Confuser

String accessCode Access code for this user. It is used for authentication in a
conference. Access code should be unique across other
accessCodes (*)

ConfInfo conferenceInfo Holds information about the conference this confuser
participates in

long confuserId Unique ID assigned by the server

DateTime created Date when record is created; assigned by the server

long dnisId ID of DNIS object this user is associated with (*)

long role Role of this confuser Moderator/Host (1L), Participant (2L),
Listener (3L) (*)

long subscriberId ID of subscriber this confuser belongs to

Click here to see conference user XML and class definition.

Conference Info (ConfInfo)

This data structure is designed to uniquely identify conference. It is a part of "Conference
User” definition and consists of the fields described in Table 3.

All Conference Users with any access codes and the same conferenceNumber will be
assigned to the same conference. Please note that Conference Users are not obliged to dial
the same DNIS to get to the same conference. To create a new conference you need to pass
0 as a conferneceNumber and provide meaningful description of this conference. In this
case server automatically assigns a new unique conferenceNumber.

Table 3: Properties of ConfInfo

Attribute[] attributes List of attributes and their values imposed by the call flow
this conference is assigned to. These attributes may be
overwritten for this particular user or taken from parent or
defaults

long conferenceNumber Identifier of the conference where this user will be assigned
after successful authentication. It should be unique across
other conference numbers; 0 means create a new one

String description Description of the conference; if conferenceNumber=0 holds new
conference description

Click here to see conference info XML and class definition.

DNIS

DNIS is a unique set of numbers that is outpulsed by a phone carrier that indicates the
intended destination for a particular call. This data structure holds information about
registered DNIS (called phone numbers) on the bridge. Besides the phone number (usually
10 digits length) each DNIS has a reference to a callflow.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_Confuser.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_ConfInfo.htm

18 Web Services API
Programmer’s Guide

Conference accounts have DNIS (dnisld) as its property, but different DNIS numbers can
be used to connect to the same conference. In addition different DNISes can be based on
the same callflows but just have different attributes (like a welcome prompt for example).

Table 4: Properties of DNIS

DnisAlias[] aliases Available aliases for this DNIS

Attribute[] attributes DNIS attributes inherited and may be overwritten from callflow
long callflowId ID of callflow this DNIS belongs to

String description Description

String did Telephone number, or name if connected to VOIP switch (*)

long dnisId Unique ID assigned by the server

Click here to see DNIS XML and class definition.

DNIS Alias (DnisAlias)
The DnisAlias data structure represents a DNIS alias.

Table 5: Properties of DnisAlias
String description Alias description
String mask Number pattern (*, 712*, etc.)

Note. This data structure was added in version 2.1 and did not exist in version 1.x.

Click here to see DNIS alias XML and class definition.

Call Flow (CallFlow)

Call flow is a unique conference service setup, the logic that is used to process the
conference calls. This is the process a call goes through from call setup to, to processing, to
call tear down. It includes the logic, DTMF key-presses used, functions, and the recorded
prompts. Each script takes several parameters (like welcome prompt).

Call flows cannot be dynamically created by user as they need to be put into the proper
place on the file system and need to be configured by administrator. However end-user
should be able to change attributes of already registered call flows in order to customize
their behavior.

Table 6: Properties of CallFlow
Attribute[] attributesTemplate Template of attributes for DNIS and confusers

long callflowId Unique ID assigned by the server
String name Callflow description (*), for instance CONF, SPECTEL, etc.
String path Directory where callflow resides on the server (*)

Click here to see call flow XML and class definition.

Attribute

This data structure is used to carry attributes for call flow (CallFlow), DNIS and conference
user (Confuser). The attributes skeleton is defined by call flow. Other entities can only
override some of them. So when a user called in to the conference DNIS it gets attributes
exposed by the call flow. Some of these attributes can be already altered by the DNIS. After

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_DNIS.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_DnisAlias.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_CallFlow.htm

19 Web Services API
Programmer’s Guide

the user provided his access code and authentication was successful some attributes can be
overwritten again by the conference user (Confuser).

It is important to remember that list of attributes is always defined by call flow. Values of
some attributes may be overwritten by DNIS and Confuser. Each attribute can be allowed
or disallowed for modification by the administrator. The call flow offers default values for
each attribute.

Each attribute has name, type and value. Depending of the type web application should
apply one or another validation rule. Also attribute has a “role” so confuesrs can only see
those attributes which role matches their own role.

Table 7: Properties of Attribute
String enumValues if type is eEnum this variable holds possible choices like
choicel;choice2;choice3 - this is readonly field populated by
server
boolean isOverridden e if the attributes are being getting for Call Flow
(attributesTemplate property) this property is always false;

e if the attributes are being retrieved for DNIS (as
aggregated attributes property) true value means that the
attribute is defined on DNIS level and false value means
that the attribute is defined on call flow level;

e if the attributes are being retrieved for ConfInfo (as
aggregated attributes property) true value means that the
attribute is defined on ConfInfo level, false - otherwise;

e if DNIS object is being saved (using createDNIS or
updateDNIS) this property true value means that the
attribute should be overridden (saved) on DNIS object level;

e if ConfInfo object is being saved (using
createConferenceInfo or updateConferenceInfo) this property
true value means that the attribute should be overridden
(saved) on ConfInfo object level;

String name attribute name like “ALLOW_CONTINUE” (*)

long role confuser role this attribute belongs to (*): ROLE_CALLFLOW
(3L) , ROLE_CONFERENCE (1L), ROLE DNIS (OL)

long type attribute type like TYPE STRING (OL), TYPE BILLINGRULE (1L),
TYPE INT (2L) , TYPE DTMF (3Ln), TYPE ROLE (4L) , TYPE CHOICE
(5L) (*)

String value attribute value like TRUE (*)

Click here to see attribute XML and class definition.

Conference

This data structure is used to describe ongoing conference on the bridge. Objects of this
type are only created by server. User may fetch these objects by calling appropriate
function. When conference is over object is deleted by the server.

The conference object is identified by conferneceld, this is a globally unique identifier that
represents the instance of a conference. So if user has two conferences with the same access
code or conference number — these conferences will have different conferneceld. It is
important to not mix it up with Conference Number. In the previous example these two
conferences will have the same Conference Number; the conference number is the property
of conference account; if the conference accounts have the same conference number all
these accounts determine one single conference.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_Attribute.htm

20 Web Services API
Programmer’s Guide

Table 8: Properties of Conference

long conferneceld Unique ID assigned by the server

long conferenceNumber This is a conference number

DateTime created Time when this conference was created - the first caller
arrived

long duration Number of seconds which have elapsed since the conference was
created

long isOnHold This field determines whether the conference is on hold; if

the conference is online (is not on-hold) the field wvalue is
OL, if the conference is on-hold the field value could be:
HOLD_MODE_HOST (1L), HOLD_MODE_PARTICIPANT (2L),

HOLD MODE LISTENER (4L)

boolean isPolling This field determines whether the polling session is started
boolean isRecording This field determines whether the conference is being recorded
boolean isSecured This field determines whether the conference is secured, i.e.
new calls allowed to join to the conference or not
long muteMode This field determines mute mode:
MUTE _MODE OPEN (OL), MUTE_MODE QUESTION (1L), MUTE MODE CLOSED
(2L)

When MUTE_MODE_OPEN mode is enabled any conference participant
can talk and mute/unmute himself. When MUTE_MODE QUESTION mode
is enabled all conference participants are muted however any
of them can unmute himself to ask a question. When
MUTE_MODE_CLOSED mode is enabled all conference participants
are muted and can not unmute himself

OperatorStatus This fields represents the operator’s activity, i.e. it

operatorStatus contains the data structure that describes the operator’s
conference

long participantCnt Number of participants in the conference

long gaMode This field determines Q&A mode:

QA MODE OPEN (OL), QA MODE CLEAR (1L), QA MODE CLOSED (2L)

Click here to see conference XML and class definition.

Operator Status (OperatorStatus)
This data structure is designed to show the status of the operator’s conference.

Table 9: Properties of OperatorStatus

long Conference number of the connected conference
engagedConferenceNumber
boolean isConnected This field determines whether the operator’s conference is

currently connected to the other one (in this case this
property is set to true).

boolean isMonitoring For the operator conference this field determines whether the
operator conference is in scanning mode (i.e. surveillance
call, usually started when the operator presses *1 on his
phone keypad)

long status This field determines operators conference mode
CONFERENCE_REGULAR (OL), CONFERENCE OPERATOR (1L),
CONFERENCE_LISTEN (2L), CONFERENCE AUTOLISTEN (3L),
CONFERENCE_AUTOLISTEN_SLEEP (4L), CONFERENCE_TALK (5L)

Note. This data structure was added in version 2.1 and did not exist in version 1.x.

Click here to see operator status XML and class definition.

ConferenceDR

This data structure is used to describe conference which is already terminated on the bridge.
User can not directly create this object.

Table 10: Properties of ConferenceDR

long conferneceld Unique ID assigned by the server

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_Conference.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_OperatorStatus.htm

21

long conferenceNumber

DateTime created

CustomExtension|[]
customExtensions

String description
long duration

DateTime expirePeriod
long fileSize

boolean hasPollingResults

boolean hasRecording
String jobCode

long participantCnt
String password

long processingStatus

long recordingDuration
String recordingUrl
long referenceNumber

String sharedRecordingUrl
long webRecordingDuration

Web Services API
Programmer’s Guide

This is a conference number

Time when this conference was created -first caller arrived
List of available (generated) custom extensions of screen
sharing recordings (see “Custom Extension (CustomExtension)”
section for details)

Conference description

Number of seconds which have elapsed since the conference was
created till the time when it was terminated

Expiration period for shared recording URL

The size of generated persistent conference recording files,
e.g. g722/ul, mp3-file size plus flv-file size (if screen
sharing was recorded); this does not include generated custom
files size; if your screen sharing recording was converted to
the custom extension (for example mp4) to get the total size
of your conference recordings you should also add fileSize for
all generated custom extension files (check customExtensions
property)

Whether or not conference was voted, i.e. whether or not the
conference was voted

Whether or not conference was recorded

Active billing (business) code of the conference

Number of participants in the conference

Conference recordings password (6 digits maximum), if the
recording password is set it should be entered to download
and/or playback the recording

Screen sharing video flv-file conversion status (from 0 till
100, or -1 in case of any processing error), i.e. creating the
flv-file from the raw format

Conference audio recording duration in seconds

URL for the audio recording

Serial (consecutive) unique conference recording reference
number (counter from 1), the number related to the specific
recording is consistent and never changed

URL for the shared audio recording

Conference video duration in seconds

Click here to see ConferenceDR XML and class definition.

Custom Extension (CustomExtension)

This data structure represents custom extensions of screen sharing recordings. Default
screen sharing video format is fIv. Currently custom extension mp4-format only is

supported.

Table 11: Properties of CustomExtension

String extension
long fileSize

long processingStatus

Extension of generated custom video conference recording file
(for example mp4)

Size of generated conference recording file in the specific
custom format (extension)

Screen sharing custom video file (for example mp4) conversion
status (from 0 till 100, or -1 in case of any processing
error)

Note. This data structure was added in version 3.1 and did not exist in previous versions.

Click here to see CustomExtension XML and class definition.

Polling Result (PollingResult)

The PollingResult data structure represents polling results for the specific conference. The
conference should be referenced by conferenceld.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_ConferenceDR.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_CustomExtension.htm

22 Web Services API
Programmer’s Guide

Table 12: Properties of PollingResult

DateTime created Time when this polling was initiated
Map<object, object> votes Sequence of option:votesCount pairs (represented by long
values)

Note. This data structure was added in version 2.1 and did not exist in version 1.x.

Click here to see polling result XML and class definition.

Operator’s Statistic (OperatorStatistic)

This data structure represents an activity statistic for specific operator in the OPERATOR
conference.

Table 13: Properties of OperatorStatistic

String accessCode Operator’s access code

long answersCount Total number of answers made by operator per specific
operator’s conference

long answersTime Total amount of seconds operator spent talking to the
customers per specific operator’s conference

long avgAnswerTime Average answer time in seconds for single call per operator’s
conference, i.e. answersTime/answersCount

long conferenceNumber Operator’s conference number

String name Operator’s name

long timeOnline Time spent online in seconds, i.e. total amount of time
operator was logged in to the interface

long timeWait Total amount of time operator was waiting for the users

Note. This data structure was added in version 2.1 and did not exist in version 1.x.

Click here to see operator’s statistic XML and class definition.

Session

This data structure represents a single ongoing call on the server. User can not directly
create this object. When the call is over server automatically deletes this object.

Normally this data structure is used to get information about call attributes like
calling/called number etc. If something needs to be done with the call (mute/hang/hold) the

call should be referenced by sessionld.

Table 14: Properties of Session

String accessCode access code entered by caller

String addressFrom Full address FROM, i.e. full qualified caller’s address

String addressTo Full address TO, i.e. full qualified callee’s address

String bridgeName Name of hosted bridge

String callee Information about callee as it is provided in TO field

String caller Information about caller as it is provided in FROM field
(normally the phone number)

String codec The active audio codec of the session, i.e. the technical name

of the codec, that is used by the call, for example PCMU for
uLaw, SIREN7 for 722.1, SIREN14 for 722.2, ILBC, etc.

long conferenceld Conference identifier of the conference this session belongs
to

long conferenceNumber Conference number of the conference this session belongs to

long connectionStatus Bit-mask that indicates the optional session attributes, for

example session direction: 0 - the inbound call, 1 - the
outbound call

DateTime created Time when this session was created

String customName custom user name either set from the web or IVR (PIN)

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_PollingResult.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_OperatorStatistic.htm

23

long duration
long gainLevel

boolean isMuted
boolean isOnHold
boolean isOnHoldSelf
String jobCode
DateTime joined
String nodeName
String operatorMode

long presenterMedia

long gaStatus

long role

long sessionId
long status

String subconference

long subscriberId

Web Services API
Programmer’s Guide

Number of seconds which have elapsed since the session started

The microphone volume level of the call, i.e. gain control

option; it could be from -10 till 10 or 255; -10 is the

quietest (lowest) sound level, 10 is the loudest (highest)

sound level, 255 denotes that the microphone level is being

automatically adjusted by the backend

whether this session is muted or not

whether this session is put on hold by administrator

whether this session is put on hold by the client (owner)

Active billing (business) code

Time when this session joined to the conference

Name of hosted node

This filed represents the operator’s activity (for instance,

empty, waiting for operator, speaking with operator, etc.).

Possible values:

e null (empty) - the caller does not need operator assistance;

e wait - the caller is waiting operator assistance, i.e. the
caller is in the operator’s queue;

e talk - the caller is talking to the operator

Specific media of the call chunk; possible values: audio (1L),

screensharing (2L), video (4L), controlling (8L)

This filed represents Q&A mode for current session:

QA STATUS_IDLE (OL), QA STATUS RAISEDHAND (1L),

QA STAUS_ACTIVE (2L)

This field determines what role this session has. The roles

should be the same as in Confusers. Role helps to verify

whether this session is allowed to do recording -

MODE_UNDEFINED (OL) MODE_HOST (1L) - host permissions granted,

MODE_PARTICIPANT (2L) - caller controls muting, i.e. the

session owner can mute/unmute himself, MODE_LISTENER (3L) -

the session owner can only listen and can not talk,

MODE_RECORDING (4L) - the recording session, MODE_DC_LINK (8L)

— distributed conference (DC) link, i.e. the control call

between two bridges in distributed conferencing

Unique ID assigned by the session

This field determines whether the current session status:

STATUS_IVR (1L) - session is owned by frontend;

STATUS_CONFERENCE (2L) - session is owned by backend;

STATUS_CLOSED (3L) - session is closed; STATUS_DIALING (4L) -

session is dealing

If non-empty, denotes current sub-conference of the session

(caller)

ID of subscriber assigned by the session

Click here to see session XML and class definition.

SessionDR

This data structure represents a single call on the server which is already terminated on the
on the bridge. User can not directly create this object.

Table 15: Properties of SessionDR

String accessCode
String addressFrom
String addressTo
long audioDuration

String bridgeName
String callee
String caller

long conferenceId

long conferenceNumber
long controllingDuration

access code entered by caller

Full address FROM, i.e. full qualified caller’s address

Full address TO, i.e. full qualified callee’s address
Duration in seconds of how long the audio (voice) call was
active, i.e. the total duration of all audio media chunks for
the call

Name of hosted bridge

Information about callee as it is provided in TO field
Information about caller as it is provided in FROM field
(normally the phone number)

Conference identifier of the conference this session belongs
to

Conference number this session belongs to

Duration in seconds of how long the control call was active,
i.e. the total duration of all controlling media chunks for
the call

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_Session.htm

24

DateTime created
String customName
String customType

long disconnectInitiator

String disconnectReason
long duration

SessionEvent[] events

String jobCode

DateTime joined

String nodeName

long role

long screenSharingDuration

long sessionId
SubSessionDR[] subSessions

long subscriberId
long videoDuration

Web Services API
Programmer’s Guide

Time when this session was created

Custom user name either set from the web or IVR (PIN)

Custom call type:

e Foreign - the 3rd party VoIP clients;

e Private - the native WYDE clients, i.e. the clients that are
using WYDE VoIP library;

e Private-ASD - the native WYDE real-time client;

e Recording - the conference recording service call

Shows who initiated a disconnect (user, bridge):

INITIATOR BRIDGE (2L) - used when session was terminated by

bridge; INITIATOR_UNDEFINED (0OL) - used when initiator is not

defined; INITIATOR USER (1L) - used when session was

terminated by user

A string showing detailed info about disconnect

Number of seconds which have elapsed since the session started

and before disconnect

List of all session events with information when the event

took place as well as the type (action) and details of the

event (see “SessionEvent” section for details)

Active billing (business) code

Time when this session joined to the conference

Name of hosted node

This field determines what role this sessions had.

Duration in seconds of how long the screen sharing session was

active, i.e. the total duration of all screensharing media

chunks for the call

Unique ID assigned by the session

List of all sub-sessions (audio, screensharing, video,

controlling) of the call (see “SubSessionDR” section for

details)

ID of subscriber assigned by the session

Duration in seconds of how long the video call was active,

i.e. the total duration of all video media chunks for the call

Note if the operator was involved into the call — the user called to the operator and the
operator attached the user to another conference there would be two SessionDR records
with the same session identifier (sessionld). These records will differ by disconnect reason.

Click here to see SessionDR XML and class definition.

SubSessionDR

The SubSessionDR data structure represents a single media sub-session of the call. In other
words it represents audio, screensharing, video, controlling sub-sessions that took place in
the call session (with the time when they were started and ended).

Table 16: Properties of SubSessionDR

DateTime created
DateTime dropped
long media

Time when call media chunk was started (created)

Time when call media chunk was disconnected (dropped)

Specific media of the call chunk; possible values: audio (1L),
screensharing (2L), video (4L), controlling (8L)

Note. This data structure was added in version 3.1 and did not exist in version 1.x.

Click here to see SubSessionDR XML and class definition.

SessionEvent

The SessionEvent data structure represents a single session event. These data represent all
occurred session actions with the information about when they took place as well as detail

information about them.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_SessionDR.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_SubSessionDR.htm

25 Web Services API
Programmer’s Guide

Table 17: Properties of SessionEvent

String action The session event type; possible actions: BROADCAST PROPOSAL,
BROADCAST REJECT, BROADCAST_ START, CONF_ACTIVE_ BEGIN,
CONF_CREATE, CONF_DROP, CONF_HOLD_ GROUP, CONF_LOCKED,
CONF MUTE_GROUP, CONF ' QAMODE _ " CLEAR ._QUEUE, CONF ' QAMODE_START,
CONF_ QAMODE STOP, CONF_RECORDING START, CONF_RECORDING_STOP,
CONF_SET | ENTRYEXITTONES CONF__. SET JOBCODE, CONF UNLOCKED
DC_ CONNECT DC_DROP, DC_LINK CLOSED DC_LINK DROPPED
DC_LINK_ESTABLISHED DTMF OP_LISTENING_START
OP_LISTENING STOP, OP_MOVE USER, OP_REGISTER CTRL,
OP_REGISTER VOICE, OP_SCAN MONITOR, OP_SCAN_START,
OP SCAN ! STOP OP_ TALK . START OP_TALK STOP OP UNREGISTER CTRL,
OP UNREGISTER VOICE REC LAUNCH REC SHUTDOWN
SES_CALLOPERATOR_START, SES_CALLOPERATOR_STOP, SES_CREATE,
SES_DIALOUT, SES DROP, SES HOLD, SES_JOIN

DateTime created Time when the session event occurred

String details Detail information about the session events; it depends on
specific session action (for example “Host,controlling” for
SES_JOIN or “Dropped by moderator” for SES_DROP, etc.)

Note. This data structure was added in version 3.1 and did not exist in version 1.x.

Click here to see session event XML and class definition.

DTMF Event (DtmfEvent)
The DtmfEvent data structure represents a single DTMF command.

Table 18: Properties of DtmfEvent
DateTime created Time when this DTMF event was initiated
String dtmf The DTMF command

Note. This data structure was added in version 2.1 and did not exist in version 1.x.

Click here to see DTMF event XML and class definition.

Subscriber Conference (SubscriberConference)

This data structure represents the single subscriber’s conference. The conference can be
either started or not started. The class is being represented by two properties — conference
that describes ongoing subscriber conference on the bridge and subscriber that describes the
subscriber of the conference, for each conference this subscriber field contains the list of
Confusers objects for that single conference only. That means that the each instance of the
class for the selected conference (conference number) contains the active conference
information (if the conference not started only conference number property is populated,
conference identifier in this case equal 0) and its subscriber information, the subscriber
information could contain up to three conference users information — for the conference
host, the conference participant, and the conference listener.

Table 19: Properties of SubscriberConference

Conference conference The ongoing conference information with its properties

Subscriber subscriber The subscriber information for the conference including up to
three conference users (for host, participant, and listener)

Note. This data structure was added in version 2.2 and did not exist in previous versions.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_SessionEvent.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_DtmfEvent.htm

26 Web Services API
Programmer’s Guide

Click here to see DTMF event XML and class definition.

Dialout Subscriber (DialoutSubscriber)

This data structure represents information necessary to perform the single dialout. The list
(array) of these objects could be used to perform batch (grouped) dialing out, see Chapter 4:
Function Reference, Conferences and Calls Management for details.

Table 20: Properties of DialoutSubscriber

String accessCode The actual access code that should be used to connect to the
conference. To connect to sub-conference right after dialout
the access code could be formed as
<actual access code> <sub-conference name>

String customName Custom user name that should be set to the caller

String dnis The conference DNIS phone number the callers has to be
connected to

String phoneNumber The caller phone number to dial-out

Note. This data structure was added in version 2.3 and did not exist in previous versions.

Click here to see DTMF event XML and class definition.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_SubscriberConference.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Classes/Class_DialoutSubscriber.htm

27 Web Services API
Programmer’s Guide

Chapter 3: Samples of Functions

WYDE Web Services Initialization

Sample of WYDE Web Services Initialization

To use WYDE Web Services, i.e. to call its methods, they should be pre-initialized and pre-
authenticated in your code — you should set web services URL (https://<WYDE bridge
domain>/dnca/jAdmin), user name (subscriber PIN) and password that should be used in
the authentication.

Click here to see sample of the web services initialization source code and configuration
file:

» Sample in this document;

» Sample on the web (requires Internet access and web browser).

Web Methods’ XML Requests and Responses

Each web services function (web method) when it is in use sends the XML request to the
server and receives the XML response from the server. XML request contains the name of
the function that is being used and all parameters of the function; these parameters can be
either scalar values or objects represented in XML form. XML response contains the name
of the function that is generating this request and the returned value; the returned value can
be either void, or scalar value, or object, or list of objects.

All samples given in this guide contains both XMLs: requests sent to server and responses
received from server. To view XML samples you may need Internet access and web
browser. This section of the guide describes different XML requests and responses that are
being generated during web methods calls.

Sample of XML for Function with Multiple Parameters Sent and List of
Objects Received

Let’s review getSessionDRs function.

This function expects four parameters: offset, limit, filter, order — see Chapter 4: Function
Reference, Section: CDRs Management for details. For instance we would like to run this
function with parameters offset = 0, limit = 3, filter = "created>='2009-10-01" and
conferenceNumber=667788", and order — empty. To execute this call the XML shown in
Sample of XML Request for Function with Multiple Parameters Sent will be generated.

This function returns the list of SessionDR objects. In our sample it returns 3 objects, the
XML response of this function is shown in Sample of XML Response for Function with
List of Objects Received.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_Init/Sample_Init.htm

28 Web Services API
Programmer’s Guide

Sample of XML for Function with the Object Parameter Sent and the Object
Received

Let’s review createSubscriber function.

This function expects single parameter — the object representing the Subscriber class.
Mandatory subscribers attributes (properties) should be populated in XML. Creating the
subscriber you can also create his conference users simultaneously (in the same function
call) with the subscriber creation (because confusers in the property of the subscriber); to
do so you should populate confusers property of the subscriber class. XML generate for
subscriber and his conference users creation is shown in Sample of XML Request for
Function with the Object Parameter Sent.

This function returns the created Subscriber object. Note that this returned object will not
be the same with the object that was sent to the server: the subscriber identifier, default
attributes values (such as role, etc.), and additional conference users attributes will be
populated in the returned object. The XML response of this function is shown in Sample of
XML Response for Function with the Object Received.

Subscribers Management

Sample of Subscriber and his Conference Accounts Creation

Let’s review the following scenario:

e we need to create the subscriber;

e when we create the subscriber we need to create three conference accounts (conference
users) — the first for moderator, the second for participant, and the third for listener.

To implement this scenario it is necessary to use web method createSubscriber. This
method allows not only creation of subscribers, but this method also can be used to create
conference accounts (conference users) with their attributes that belong to the subscribers.

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

Sample of Subscribers Filtering, Modifications, Conference Accounts
Modifications

Let’s review the following scenario:

e we need to find the subscriber that was created in the previous sample using his pin;

e for the selected subscriber we need to modify his password and email;

e for the selected subscriber we need to remove his conference accounts (conference
users) with the listener role;

e for the selected subscriber we need to define some custom attributes as well as change
access code for his conference accounts with host role.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.htm

29 Web Services API
Programmer’s Guide

To implement this scenario it is necessary to use web methods getSubscribers and
updateSubscriber. The getSubscribers method is used to filter the subscribers based on
different criteria. The updateSubscriber method allows not only modification of subscriber’
properties, but this method also can be used to create, modify or delete conference accounts
(conference users) and conference info with their attributes that belong to this subscriber.
As alternative approach of updating of conference info and their attributes information it is
possible to use updateConferencelnfo method as shown in this sample.

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

Sample of Subscribers Filtering and Deletion

Let’s review the following scenario:

e we need to find out all subscribers who have emails from domain “manage.com”;

e for each of these subscribers if the subscriber does not have phone number we need to
delete him.

To implement this scenario it is necessary to use web methods getSubscribers (to filter the
subscribers) and deleteSubscriber (to delete the selected subscriber).

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

Sample of Getting Conference Users Information

Let’s review the following scenario:

e we need to count conference users (accounts) with for SPECTEL call flow;

e we need to get all conference users (accounts) with for SPECTEL call flow with host
role;

e we need to output subscriber ID, conference number, access code for them.

To implement this scenario it is necessary to use web methods getCallFlows (to filter the
call flows), getDNISes (to filter the DNISes), getConfusersCount (to get the number of
conference users based on criteria) and getConfusers (to filter the conference users based
on criteria).

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

Conferences and Calls Management

Sample of Conferences Filtering, Changes Secure Mode, Dropping the
Conferences

Let’s review the following scenario:

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.htm

30 Web Services API
Programmer’s Guide

e we need to count how many conferences are currently on the bridge;

o for the selected subscriber we need to drop all conferences if the participants count less
than two;

e for unsecured conferences for the selected subscriber with two participants we need to
make them secure.

To implement this scenario it is necessary to use web methods getConferencesCount (to get
the number of active conferences based on criteria), getConferences (to filter the
conferences based on different criteria), hangup Conference (to hang-up the selected
conference, i.e. to drop all conference calls and terminate the conference),
secureConference (to make the conference secure, i.e. to move the conference into the state
when no new calls are allowed to get in there).

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

Sample of Placing the Entire Conference on Hold, Starting and Stopping Q& A
Sessions and Conference Recording

Let’s review the following scenario:

e we need to place the specific conference (the conference with specific conference
number) on hold;

e we need to wait 1 minute and take this conference off hold;

e after that we need to start conference recording and start Q& A session for this
conference;

e we need to wait 1 minute, we assume that conference participants requested to ask
questions during this minute;

e we need to let the first participant ask his question (i.e. un-mute him - engage his Q&A
session);

e we need to wait 1 minute and then complete the first participant question, i.e. disengage
his Q&A session,;

e we need to stop Q&A session and stop conference recording for this conference.

To implement this scenario it is necessary to use web methods getConferences (to filter the
conferences based on different criteria), getSessions (to filter the conference calls based on
different criteria), holdConference (to place the conference on hold), unHoldConference (to
take the conference off hold), gaSetMode (to start and stop Q&A session for the
conference; note the this method should used for these purposes starting from version 2.1
only, in version 1.x method muteConference was used), gaEngage (to engage Q&A session
for the conference participant, i.e. to un-mute the participant), gaDisengage (to disengage
Q&A session for the conference participant, i.e. to mute the participant after he asked his
question), startConferenceRecording (to start the conference recording),
stopConferenceRecording (to stop the conference recording).

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.htm

31 Web Services API
Programmer’s Guide

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

Sample of Conference Polling Sessions

Let’s review the following scenario:

e we need to start the polling session for the specific conference (the conference with
specific conference number) with available polling options 1, 2, 3;

e we need to wait 1 minute, we assume that conference participants will vote (select one
of the available options) during this minute;

e we need to stop the polling session for this conference;

e after that we need to output polling results.

To implement this scenario it is necessary to use web methods startPolling (to start the
polling for the specified conference with selected options), stopPolling (to stop the polling
for the specific conference), getPollingResults (to get the list of polling results for the
conference).

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

Sample of Calls Filtering, Mute the Calls, Dropping the Calls

Let’s review the following scenario:

e we need to count how many calls are currently on the bridge;

e for the selected subscriber we need to drop all participants calls if the call duration
greater than 10 minutes;

e for remaining participants of the selected subscriber (with call duration less than 10
minutes) we need to mute their calls.

To implement this scenario it is necessary to use web methods getSessionsCount (to get the
number of active calls based on criteria), getSessions (to filter the calls based on different
criteria), hangupSession (to drop/disconnect the specific call), muteSession (to mute the
specific call participant).

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

Sample of Setting Custom Name and Placing Calls on Hold

Let’s review the following scenario:

o for the conference with specific conference number we need to set custom name for the
host “conference moderator”;

e for the same conference we need to place all listeners and participants on hold.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.htm

32 Web Services API
Programmer’s Guide

To implement this scenario it is necessary to use web methods getSessions (to filter the
calls based on different criteria), setCustomName (to set the custom name for the specific
call participant), holdSession (to place the call/participant on hold).

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

CDRs Management

Sample of Getting Conferences Historical Information

Let’s review the following scenario:

e we need to count how many conferences were on the bridge from the beginning of the
month;

e for the selected subscriber we need to output his current month conferences information
(conference number, conference ID, date and time when the conference occurred,
duration, participants count, and info about recording URL if exists), ordered by
conference number and conference date.

To implement this scenario it is necessary to use web methods getConferenceDRsCount (to
return number of ConferenceDRs, i.e. historical conference information, stored in local
CDR database based on criteria), getConferenceDRs (to filter the historical conference
information based on different criteria).

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

Sample of the Shared Recording Generation

In the previous sample (Sample of Getting Conferences Historical Information) we get

conferences with recording. Let’s review the following scenario:

e we need to generate recording URL link, that will allow user to download conference
recording without authorization during the next hour (for the conference with recording
referenced by the conferenceld, that was found in the previous sample);

e we need to output the ConferenceDR object information prior and after shared
recording URL generation to see the differences in the object properties.

To implement this scenario it is necessary to use web methods shareRecording (to generate
shared recording, i.e. recording URL that will be available without authorization) and
getConferenceDR (to get the single historical conference information based on the
conference identifier).

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.htm

33 Web Services API
Programmer’s Guide

Sample of Getting Calls Historical Information

Let’s review the following scenario:

e we need to count how many calls were on the bridge from the beginning of the month
for the specific conference number;

e for the specific conference number we need to output current month conference calls
information (conference number, conference ID, date and time when the call occurred,
duration, called number, calling number, custom name, disconnect reason;

e if number of calls to output greater than 5, we should implement paging and output 5
calls on the page.

To implement this scenario it is necessary to use web methods getSessionDRsCount (to
return number of SessionDRs, i.e. historical calls/sessions information, stored in local CDR
database based on criteria), getSessionDRs (to filter the historical calls information based
on different criteria).

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

Sample of Historical Calls Filtering

Let’s review the following scenario:

e for the current month we need to output all calls that were connected to the conferences
excluding service calls to the recording server initiated by bridge (for instance we
should output calling number, called number, conference number, conference identifier,
date/time when the call was started, and how long the call was connected to the
conference).

To implement this scenario it is necessary to use web method getSessionDRs and use the
filter that allows to select the requested calls only.

Click here to see sample of the source code, XML requests and responses, screenshots:
» Sample in this document;
» Sample on the web (requires Internet access and web browser).

Active Speaker Notification

WYDE bridge software has the mechanism allowing finding out who is speaking at the
moment and how loud the person is speaking (i.e. the channel volume). Because this
information should be available very fast (“on-the-fly”), it would be too costly to call web
services each time for these requests. WYDE bridge software uses the lightweight JSON
(JavaScript Object Notation) calls for this purpose.

From the web active talker indicators can be received for one specific conference only. L.e.
WYDE software gives this information not for all active conferences, but for requested
conferences only. To do that it is necessary to implement http request for the URL:
/jsonASN.jsp?conferenceNumber=667788 (where 667788 is the conference number)

As the response you will get JSON-array, for instance:

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.htm
http://en.wikipedia.org/wiki/JSON

34 Web Services API
Programmer’s Guide

{"sessionId":"16778157","level":"5"},
{"sessionId":"16778156","level":"2"}

Actually the system shows the loudest four persons and their sound volume. If there was no
any information returned, that means that everybody keeps silent. The sound level could be
from O (silence) till 15 (loudest). Note the silence (0) level is not being responded. The
minimum level that could be returned is 1.

Below we show the JavaScript code sample how this mechanism can be implemented. The

sample shows how to get the active speaker notifications.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/yuiloader/yuiloader-min.js"></script>

<script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/event/event-min.js"></script>

<script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/dom/dom-min.js"></script>

<script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/logger/logger-min.js"></script>

<script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/json/json-debug.js"></script>

<script type="text/javascript"
src="http://yuil.yahooapis.com/2.8.1/build/connection/connection-min.js"></script>

<script type="text/javascript"
src="http://yui.yahoocapis.com/2.8.1/build/element/element-min.js"></script>

<script type="text/javascript"
src="http://yui.yahooapis.com/2.8.1/build/button/button-min.js"></script>

<title>ASN Example</title>

</head>

<body>
<div id="demo msg"></div>

<script type="text/javascript">

// Get the div element in which to report messages from the server
var msg section = YAHOO.util.Dom.get ('demo msg');
msg_section.innerHTML = '';

var callbacks = {
// Successful XHR response handler
success : function (o) {
// Get the div element in which to report messages from the server
msg_section = YAHOO.util.Dom.get ('demo msg');

msg_section.innerHTML = '';
var messages = [];
// Use the JSON Utility to parse the data returned from the server
try {

messages = YAHOO.lang.JSON.parse (o.responseText) ;
}

35 Web Services API
Programmer’s Guide

catch (x) {
alert ("JSON Parse failed!");
return;

}

// The returned data was parsed into an array of objects.

// Add a P element for each received message

for (var i = 0, len = messages.length; 1 < len; ++i) {
var m = messages[i];
var p = document.createElement ('p');
var message text =

document.createTextNode ("sessionId="+m.sessionId+",
level="+m.level);

p.appendChild (message text);
msg_section.appendChild(p);

}

}
}i

function getInfo (conf number) {
if (conf number>0) {

YAHOO.util.Connect.asyncRequest ('GET',"https://192.168.1.30/jsonASN.jsp?conferenc
eNumber="+conf number, callbacks);

}

}

</script>

<label>Enter conference number</label>
<input type="text" value="" id="conf number id"/>
<input type="button" wvalue="Get info!"
onclick="getInfo (document.getElementById('conf number id').value)"/>

</body>

</html>

Storage Library

Storage is a WYDE library that is being installed during WYDE bridge installation. It is
used to keep and control the media files, i.e. audio, screen sharing, video recordings, as
well as converted files (for example into mp4-format) and the files uploaded by users. It
allows you to convert the media files into popular formats. The Storage library keeps and
maintains metadata about the stored media files, e.g. description of the files, files attributes,
etc. It allows you to display contents of the folders, download the files, upload the files, as
well as perform different files management tasks, including deletion, renaming, sharing,
etc. Thus this library could be used either to work with individual file, or to work the entire
folder (that is the list of the specific conference files).

The Storage library works as REST-service. If the transaction was successful HTTP 200
status code (Success) is being returned; in case of the error HTTP 500 status code (Server
Error) is being returned; if authorization is required HTTP 401 status code (Unauthorized)
is being returned'.

"' See “List of HTTP status codes” (http://en.wikipedia.org/wiki/List_of HTTP_status_codes) for detailed
information.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

36 Web Services API
Programmer’s Guide

Storage application URL is being formed as https://<Wyde bridge domain>/storage/. For
instance the possible Storage file manager URLs could be https://192.168.1.30/storage/.

Storage can be secured with the standard web application security. For this, remove the
comment around the <security-constraint> entry in storage/WEB-INF/web.xml
file and only users in role moderator will have access. Your web.xml file should contain the

following code:
<security-constraint>
<web-resource-collection>
<web-resource-name>storage</web-resource-name>
<url-pattern>/list/*</url-pattern>
<url-pattern>/ctx/*</url-pattern>
<url-pattern>/dlf/*</url-pattern>
<url-pattern>/dlx/*</url-pattern>
</web-resource-collection>

<auth-constraint>
<role-name>manager</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>MyRealm</realm-name>
</login-config>

<security-role>
<role-name>manager</role-name>
</security-role>

Note that MyRea 1m object should have the specified manager role.

Showing Folder Content for Conference Files

To display the folder content the /ist option (command) should be used right after the
storage portion in the URL.

Storage always displays the contents of one single folder only.

Use the following URL to specify the conference's folder:

https://<Wyde bridge domain>/storage/list/<conference number>[?options]

for example:
https://192.168.1.30/storage/list/749932?k=95064a84bc5f80c666dfc637a7707434

In this URL, /ist clause indicates that the list of files in the folder should be retrieved, and
<conference number> determines the contents of what specific conference folder should be
shown.

There are few options that you can use in the /ist command to customize appearance of the
files in the specified conference folder. These options are followed by the question mark (?)
and they are the following:
o — comma-delimited order list in the form of field: type:otype, where
field:
file type - {data | audio | conf}
mtime - last modify time in seconds since the epoch

https://192.168.1.30/storage/list/749932?k=95064a84bc5f80c666dfc637a7707434

37 Web Services API
Programmer’s Guide

atime - last access time in seconds since the epoch
duration - audio file duration (undefined for data files)
size - file size (bytes)
id - file ID
ref number - reference number (for audio files only)
password - password (for conferences files only)
remote_ip - for the uploaded files — the remote IP from which the file
was uploaded; for the recording files — the conference phone
number
type (order type):
str - sort as sting
num - sort as number
otype (order direction):
desc - descending order
asc - ascending order

for example: o=remote ip:str,atime:num:asc
f — comma-delimited filter list in the form of filter:value, where

filter:
st - start timestamp
et - end timestamp
ci - conference identifier (for example: ci:333456:333458)
m - reference number
dmin - minimal duration
dmax - maximal duration
cf - custom filter, for example:

f=cf:meta description:megafile:meta ftype:u
f=cf:1d:1d-805361564.9g722
f=cf:s51ze:4108570

t — file types:

a - for all files (default)
c - only recordings available for this conference
u - only uploads available for this conference

ps — page size
of fs — offset
k — host key

For example:
https://192.168.1.30/storage/list/749932?t=a&k=95064a84bc5{80c666dfc637a7707434

The sample of the folder content returned using the /ist command described above is shown
in Figure 3. As you can see file name, file size, file last modification date, relative URL to
download the file, shared/private flag, and sorting order are returned. If the description has
been set for the file the rightmost column contains this file description.

File/Folder Name File Size Last Modification Date UBL to Download the File shared/private order
record dir Dec 8, 2010 6:11:15 DM jrecord private -1

public dir May 18, 2010 1:10:43 M
samplel.jpg 4788 bytes Rpr 2z, 2 fstorage/dl£/usr/local/INCA/ var/recordings/ 932/743532 /upload/sarplel .3 pg shared -1
fstorage/dlf/usr/local/INCA/ var/recordings/ 532/7453532 /upload/sarple? -3 pg shared -1
fstorage/dl £/usr/local/INCA/ var/recordings/ 932/7459932 /upload/sample3 _3pg shared -1
fstorage/dl£/usr/local/INCA/ var/recordings/ 532/7453332 /upload/sampled 3 pg shared -1

sampleZ_jpg 3230 bytes Lpr 3z, 2
sample3_jpg 4220 bytes Rpr 22, Z
sampled_ipg 4318 bytes kpr 2z, Z

Figure 3: Folder Content Sample

https://192.168.1.30/storage/list/749932?t=a&k=95064a84bc5f80c666dfc637a7707434

38 Web Services API
Programmer’s Guide

The JSON format is being used for serializing and transmitting structured data returned by
the Storage library; it is used as primary protocol in this library. The output data sample of
the /ist option (command) is shown in Figure 4; this sample contains audio and video
recordings as well as the files uploaded by users; note: the set of attributes differs
depending on the file type.

{"mtime":1346827423,"duration":22, "mediaurl":"SQEN/JjHFIn", "size":176320,"file type":"con

f", "password":"", "conf id":"134248034","ref number":"4",6"id":"1d-134248034.g722"},
{"mtime":1346828030, "duration":76, "mediaurl":"SQEN/JHFIN", "size":610800,"file type":"con
f", "password":"","conf 1d":"134248035","ref number":"7","id":"id-134248035.g722"},
{"mtime":1347970484, "duration":3, "mediaurl":"SQEN/jHFeJ", "size":24240,"file type":"conf"
,"password":"","conf id":"134249633","ref number":"5","id":"i1d-134249633.g722"},
{"mtime":1349079726, "duration":13, "mediaurl":"SQEN/jH3jX", "size":105360,"file type":"con
f", "password":"","conf 1d":"134252282","ref number":"11","id":"id-134252282.9722"},
{"mtime":1349080166, "duration":13, "mediaurl":"SQEN/JjH3jS", "size":108880,"file type":"con
f", "password":"", "conf id":"134252283","ref number":"9","id":"1d-134252283.g722"},
{"mtime":1349081865, "duration":302, "mediaurl":"SQEN/JjH3jf", "size":2419120,"file type":"c
onf", "password":"","conf 1d":"134252284","ref number":"8","id":"id-134252284.g722"},
{"mtime":1349780185, "duration":29, "mediaurl":"SQEN/nBQCh", "size":232240,"file type":"con
f", "password":"","conf 1d":"805341916", "mp4progress":100,"ref number":"12", "mpdsize":2

378006, "id":"1id-805341916.g722"},
{"mtime":1350641118, "duration":233, "mediaurl":"SQEN/nBQw5", "size":1864400,"file type":"c

onf", "password":"","conf 1d":"805342971","ref number":"6","id":"id-805342971.g722"},
{"mtime":1355912984, "duration":107, "mediaurl":"SQEN/nBiyt", "size":859040,"file type":"co
nf", "password":"", "conf id":"805350458","ref number":"1","id":"id-805350458.g722"},
{"mtime":1355929097, "duration":0, "mediaurl":"SQEN/nBie3","size":1040,"file type":"conf",
"password":"","conf id":"805350507","ref number":"3","id":"id-805350507.g722"},
{"mtime":1358500310, "duration":47, "mediaurl":"SQEN/nBoOw", "size":383440,"file type":"con
f", "password":"","conf 1d":"805353370","ref number":"14","id":"id-805353370.g722"},
{"mtime":1358945521, "duration":335, "mediaurl":"SQEN/O5dLr", "size":2681040,"file type":"c
onf", "password":"","conf id":"100001000","ref number":"1020","id":"id-

100001000.g722"},
{"mtime":1359988109, "duration":6, "mediaurl":"SQEN/nBovJ", "size":54000,"file type":"conf"
, "password":"", "conf id":"805355241","ref number":"1021","id":"id-805355241.g722"},
{"mtime":1359988838, "duration":15, "mediaurl":"SQEN/nBovu", "size":120480,"file type":"con
f", "password":"", "conf id":"805355245", "ref number":"1022","id":"1d-805355245.g722"},
{"mtime":1359989304, "duration":9, "mediaurl":"SQEN/nBovm", "size":74160,"file type":"conf"
, "password":"", "conf id":"805355252","ref number":"1023","id":"id-805355252.g722"},
{"mtime":1359989427, "duration":30, "mediaurl":"SQEN/nBovn", "size":242400,"file type":"con

f", "password":"", "conf id":"805355254","ref number":"1024","id":"1d-805355254.g722"},
{"mtime":1359989478, "duration":32, "mediaurl":"SQEN/nBovN", "size":256560,"file type":"con
f", "password":"", "conf id":"805355255", "ref number":"1025","id":"1id-805355255.9722"},
{"mtime":1359989985, "duration":19, "mediaurl":"SQEN/nBovV", "size":154480,"file type":"con
", "password":"","conf 1d":"805355259","ref number":"1026","id":"id-805355259.g722"},
{"mtime":1359990191, "duration":13, "mediaurl":"SQEN/nBoKc", "size":109680,"file type":"con
f", "password":"","conf id":"805355262","ref number":"1027","id":"id-805355262.g722"},
{"mtime":1359990296, "duration":11, "mediaurl":"SQEN/nBoKI", "size":91120,"file type":"conf
", "password":"","conf i1d":"805355264","ref number":"1028","id":"1d-805355264.g722"},
{"mtime":1359990354, "duration":8, "mediaurl":"SQEN/nBoKD", "size":67440,"file type":"conf"

, "password":"", "conf id":"805355265","ref number":"1029","id":"1d-805355265.9722"},
{"mtime":1359990582, "duration":18, "mediaurl":"SQEN/nBoKO", "size":147280,"file type":"con
f", "password":"","conf 1d":"805355268","ref number":"1030","id":"id-805355268.g722"},

{"mtime":1359990690, "duration":9, "mediaurl":"SQEN/nBoKj", "size":77200,"file type":"conf"
,"password":"", "conf id":"805355271","ref number":"1031","id":"id-805355271.g722"},

{"mtime":1360081472, "duration":12, "mediaurl":"SQEN/nBo5P", "size":102960,"file type":"con
f", "password":"", "conf id":"805355533","ref number":"1032","id":"id-805355533.g722"},

{"mtime":1360082205, "duration":2, "mediaurl":"SQEN/nBo5A", "size":21200,"file type":"conf"
, "password":"", "conf id":"805355545","ref number":"1033","id":"i1id-805355545.g722"},

{"mtime":1360756504, "duration":520, "mediaurl":"SQEN/nBOCr", "size":4167760,"file type":"c
onf","password":"","conf id":"805357268","ref number":"1034","id":"id-
805357268.g722"},

{"mtime":1360759716, "duration":6, "mediaurl":"SQEN/nBOCV","size":50960,"file type":"conf"
,"password":"", "conf id":"805357305","ref number":"1035","id":"id-805357305.g722"},
{"mtime":1360759742, "duration":2, "mediaurl":"SQEN/nB0C2", "size":18000,"file type":"conf"
, "password":"","conf id":"805357306", "ref number":"1036","id":"id-805357306.9722"},
{"mtime":1360759817, "duration":6, "mediaurl":"SQEN/nBOCM", "size":48240,"file type":"conf"
,"password":"", "conf id":"805357307","ref number":"1037","id":"id-805357307.g722"},

39 Web Services API
Programmer’s Guide

{"mtime":1360760002, "duration":29, "mediaurl":"SQEN/nB09D", "size":232880,"file type":"con

f", "password":"", "conf id":"805357311","ref number":"1038","id":"id-805357311.g722"},
{"flvprogress":100, "mtime":1363609448, "duration":728, "mediaurl":"SQEN/nBC40", "size":1093
77233,"file type":"conf","password":"","conf id":"805363762","ref number":"1039","id":

"id-805363762.g722"},

{"file type":"upload","mtime":1363964851,"id":"u/70kjtHkO DhO OASgXNX70aQ.png", "mediaurl
":"SQEN/u/70kjtHkO_DhO OASgXNX70aQ.png","size":12947},

{"file type":"upload","mtime":1363964852,"id":"u/vFGUzgQOmaA9LgO 4ftRReqw.png", "mediaurl"
:"SQEN/u/vFGUzgQmaA9LgO 4ftRReqw.png","size":12947},

{"file type":"upload","mtime":1364299375,"id":"u/0_fjVPI ya5x02xQQ9tU60 eg.mp3", "mediaur
1":"SQEN/u/0 fjVPI ya5x02xQQ9tU60 eg.mp3","size":7014443},

{"file type":"upload","mtime":1364299386,"id":"u/0_ fjVPI ya5x02xQQ9tU60 eg.jpg", "mediaur
1":"SQEN/u/0_fjVPI yabx02xQQ9tU60 eg.jpg","size":7021},

{"mtime":1364299648, "duration":107, "mediaurl":"SQEN/nB9Yf", "size":863120,"file type":"co
nf", "password":"", "conf id":"805366634","ref number":"1041","id":"1d-805366634.g722"},

{"mtime":1364397623, "duration":7, "mediaurl":"SQEN/nB9u0O", "size":56560,"file type":"conf"
,"password":"", "conf id":"805366924","ref number":"1042","id":"1d-805366924.g722"},

{"mtime":1364397849, "duration":10, "mediaurl":"SQEN/nB9uQ", "size":81200,"file type":"conf
", "password":"","conf 1d":"805366926","ref number":"1043","id":"id-805366926.g722"}

]

Figure 4: Folder (/ist command) JSON Data Sample

File upload

To upload one or several files use the following folder URL:
https://<Wyde bridge domain>/storage/upload/<conference number>.
To upload the file method="post" is used, other parameter:
enctype="multipart/form-data". The method post parameters:
o k- host key
o file - source upload file name
o filename - target file name (optional)
o meta * - attributes (optional)
The command returns new file current attributes.

The example below illustrates how to upload file to the "upload" folder:
<form action="https://192.168.1.30/storage/upload/749932" method="post"
enctype="multipart/form-data">
<input type="file" name="file" size="30">
<input type="submit" name="command" value="Upload"/>
</form>

Files management

There are different commands that can be used within the Storage file manager. The name
of the command, the folder and specific file name are embedded into URL path; the
possible command parameters are being specified in URL query string fields using
traditional web approach:
https://<Wyde bridge domain>/storage/
<command: delete|password|get|mp4convimp4progress|\mp4del|attr>
<conference number>/{<file name>|id-<conference ID>}
[?<options: option_namel=option_valuel [&option name2=option valuel[&...]]]
In particular, encoding the query string uses the following rules:
e Letters (A-Z and a-z), numbers (0-9) and the characters '.", '-', '~' and ' ' are left as-is;
e All other characters are encoded as $FF hex representation (for example SPACE is
encoded as %20, etc.).

40 Web Services API
Programmer’s Guide

There following files management commands are available in Storage:
o delete — delete the specified conference recording file or the uploaded file:
https://<Wyde bridge domain>/storage/delete/<conference_number>/
{<file name>|id-<conference ID>}[?options]

options:
o pswd - file password (if previously defined, for conference files only)
o k- host key

for example:
https://192.168.1.30/storage/delete/749932/1d-3334567k=68eb875763cbabcObc8eS
c74tb0b717&pswd=123
e password — set or delete the conference recording file password:
https://<Wyde bridge domain>/storage/password/<conference_number>/
{<file name>|id-<conference ID>}[?options]

options:
o new_ pswd - new recording password that should be set; to delete current
password, just use empty string as this parameter value, i.e. 'new pswd="
o k- host key
for example:
https://192.168.1.30/storage/password/id-749932/333456?7k=68eb875763cbabcObc
8e5¢74fb0b717&new pswd=123
e get —download (get) the conference recording file or the previously uploaded file:
https://<Wyde bridge domain>/storage/get/<conference_number>/
{<file name>|id-<conference ID>}[?options]

options:

o pswd - file password (if previously defined, for conference files only)

o format - file format (only for audio files: wav, mp3; if not defined — use

original audio file format)

o k- host key

for example:

https://192.168.1.30/storage/get/749932/id-3334567k=31e9ea5fcfe9b0d259612324c
1bf142a&format=mp3 &pswd=000

e mp4conv — convert screen sharing video recording file to the custom mp4-format:

https:// <Wyde bridge domain>/storage/mp4conv/<conference number>/

{<file name>|id-<conference ID>}[?options]

options:

o k- host key

for example:

https://192.168.1.30/storage/mp4conv/749932/id-3334567k=31e9ea5fcfe9b0d25961
2324c1bf142a

o mp4progress — get the progress (status) of screen sharing video recording file
conversion to mp4-format:

https://<Wyde bridge domain>/storage/mp4progress/<conference number>/

{<file name>|id-<conference ID>}[?options]

options:
o k- host key

https://192.168.1.30/storage/delete/749932/id%1E333456?k=68eb8f75763cbabc0bc8e5c74fb0b717&pswd=123
https://192.168.1.30/storage/delete/749932/id%1E333456?k=68eb8f75763cbabc0bc8e5c74fb0b717&pswd=123
https://192.168.1.30/storage/password/id%1E749932/333456?k=68eb8f75763cbabc0bc8e5c74fb0b717&new_pswd=123
https://192.168.1.30/storage/password/id%1E749932/333456?k=68eb8f75763cbabc0bc8e5c74fb0b717&new_pswd=123
https://192.168.1.30/storage/get/749932/id%1E333456?k=31e9ea5fcfe9b0d259612324c1bf142a&format=mp3&pswd=000
https://192.168.1.30/storage/get/749932/id%1E333456?k=31e9ea5fcfe9b0d259612324c1bf142a&format=mp3&pswd=000
https://192.168.1.30/storage/mp4conv/749932/id%1E333456?k=31e9ea5fcfe9b0d259612324c1bf142a
https://192.168.1.30/storage/mp4conv/749932/id%1E333456?k=31e9ea5fcfe9b0d259612324c1bf142a

41

Web Services API
Programmer’s Guide

Returns the progress from 0 till 100 or -1 if the conversion is not running and in

case of any error:

{
"mp4progress" : 6

}

for example:

https://192.168.1.30/storage/mp4progress/749932/1d-333456?k=31e9eaSfcfe9b0d25
9612324c1bfl142a

mp4del — delete the screen sharing video recording custom mp4-format file:

https://<Wyde bridge domain>/storage/mp4del/<conference number>/
{<file name>|id-<conference ID>}[?options]
options:
o k- host key
for example:
https://192.168.1.30/storage/mp4del/749932/id-333456?k=31e9ea5fcfe9b0d259612
324c1bfl42a

attr — set meta-attributes of the recording file:

https://<Wyde bridge domain>/storage/attr/<conference number>/
{<file name>|id-<conference ID>}[?options]
options:
o meta * -meta-attributes that should be set (updated) in form
meta <attribute name>=<attribute value>
o k- host key
for example:
https://192.168.1.30/storage/attr/749932/u/user-file.mp3?k=ed4874c262dfe0e25959
8albfl1752b7c&meta_desc=testing&meta custom=123
To delete current attribute, just use empty string as meta-attribute value, for
example: 'meta desc=&meta custom=". The command returns current
attributes of the specified file.

In all storage commands the host key is md5_hex taken from the string that is concatenated
the secret key (that is specific for each recording server) and dash (-) and the PATH INFO
of the command URL: md5_hex("<secret key>-ENV{PATH_INFO}").

For example:

o https://192.168.1.30/storage/upload/8773289
* md5_ hex("<secret key>-/upload/8773289")
o https://192.168.1.30/storage/get/8773289/id-3334567k=31e9¢eaSfcfe9b0d259612
324c1bfl42a&format=mp3&pswd=000
» md5 hex("<secret key>-/get/8773289/id-333456")
o https://192.168.1.30/storage/password/8773289/id-333456?k=68eb8f75763cbab
c0bc8e5¢74tb0b717&new pswd=321
* md5 hex("<secret key>-/password/8773289/id-333456")
o https://192.168.1.30/storage/get/8773289/id-333456/RANDOM _CHARS?k=68
eb8f75763cbabc0bc8e5¢74fb0b717& format=mp3&pswd=000
» md5 hex("<secret key>-/get/8773289/id-333456/RANDOM_CHARS")

https://192.168.1.30/storage/mp4progress/749932/id%1E333456?k=31e9ea5fcfe9b0d259612324c1bf142a
https://192.168.1.30/storage/mp4progress/749932/id%1E333456?k=31e9ea5fcfe9b0d259612324c1bf142a
https://192.168.1.30/storage/mp4del/749932/id%1E333456?k=31e9ea5fcfe9b0d259612324c1bf142a
https://192.168.1.30/storage/mp4del/749932/id%1E333456?k=31e9ea5fcfe9b0d259612324c1bf142a
https://192.168.1.30/storage/attr/749932/u/user%1efile.mp3?k=ed4874c262dfe0e259598a1bf1752b7c&meta_desc=testing&meta_custom=123
https://192.168.1.30/storage/attr/749932/u/user%1efile.mp3?k=ed4874c262dfe0e259598a1bf1752b7c&meta_desc=testing&meta_custom=123
https://192.168.1.30/storage/upload/8773289
https://192.168.1.30/storage/get/8773289/id%1E333456?k=31e9ea5fcfe9b0d259612324c1bf142a&format=mp3&pswd=000
https://192.168.1.30/storage/get/8773289/id%1E333456?k=31e9ea5fcfe9b0d259612324c1bf142a&format=mp3&pswd=000
https://192.168.1.30/storage/password/8773289/id%1E333456?k=68eb8f75763cbabc0bc8e5c74fb0b717&new_pswd=321
https://192.168.1.30/storage/password/8773289/id%1E333456?k=68eb8f75763cbabc0bc8e5c74fb0b717&new_pswd=321
https://192.168.1.30/storage/get/8773289/id%1E333456/RANDOM_CHARS?k=68eb8f75763cbabc0bc8e5c74fb0b717&format=mp3&pswd=000
https://192.168.1.30/storage/get/8773289/id%1E333456/RANDOM_CHARS?k=68eb8f75763cbabc0bc8e5c74fb0b717&format=mp3&pswd=000

42 Web Services API
Programmer’s Guide

Chapter 4: Function Reference

Subscribers Management

e getSubscriber (long subscriberId) — Returns full information about the
Subscriber with the given ID.
Parameters:
subscriberld — The Subscriber identifier
Returns:
Subscriber object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e getSubscribers (long offset, long limit, String filter,
String order) — This function returns list of Subscribers that match filter. Offset
and limit allow implementing paging on the web server. Please note that field confusers
in Subscriber will not be populated to avoid huge amount of data to be transferred in
case if big request is processing Subscriber objects.
Parameters:
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Subscriber field names or composite
(compound) statement relative to confuser/conferencelnfo fields names.
Acceptable operators: <=, >= =, =,<, > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example pin='12' or pin like'%2%" or subscriberld >= 15.
Empty string or null means no filter.
order - A string specifying Subscriber field name and sort direction.
For example "pin" or "email desc". The default direction is asc and can be
omitted.
Empty string or null means no order.
Acceptable fields for filtering and sorting:
* subscriberld
* parentld
* pin
* password
* firstName
* lastName
* email
* address1
* city
* state
* Zip
* country

43

* phoneNumber

* confuser.accessCode

* confuser.confuserld

» confuser.dnisld

* confuser.role

» confuser.subscriberld

» confuser.conferencelnfo.conferenceNumber

Returns:
list of Subscriber objects
Throws Exceptions:
ServerException
AccessDeniedException
getSubscribersCount
that match the given filter.
Parameters:
filter - The criteria to use to filter the rows. The criteria should be a simple sql

Web Services API
Programmer’s Guide

(String filter) — Returns count of Subscribers

conditional statement started with one or more Subscriber field names or composite
(compound) statement relative to confuser/conferencelnfo fields names.
Acceptable operators: <=, >= == < > like (case sensitive), ilike (case

insensitive), and. Note: or-clauses and brackets are not supported.

For example pin='12' or pin like'%2%" or subscriberld >= 15.

Acceptable fields for filtering:

* subscriberld

* parentld

* pin

* password

* firstName

* JastName

* email

e addressl

* city

* state

* Zip

* country

* phoneNumber

* confuser.accessCode

* confuser.confuserld

* confuser.dnisld

* confuser.role

* confuser.subscriberld

» confuser.conferencelnfo.conferenceNumber
Empty string or null means no filter.

Returns:
long count of Subscribers
Throws Exceptions:
ServerException

44 Web Services API
Programmer’s Guide

AccessDeniedException
e createSubscriber (Subscriber subscriber) — Creates a Subscriber. Pay
attention to the list of mandatory fields to be filled in.
Parameters:
subscriber — The Subscriber object
Returns:
created Subscriber object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException
e updateSubscriber (Subscriber subscriber) — Updates a Subscriber
whose ID is presented in s with the information from the structure. Please make sure
you filled all information that needs to be in the updated Subscriber. Recommendation
is to call getSubscriber first, change some info and then call

updateSubscriber.
Parameters:

subscriber — The Subscriber object
Returns:

updated Subscriber object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException
e deleteSubscriber (long subscriberId) — Deletes a Subscriber with the
given ID and all subordinate Confusers.

Parameters:

subscriberld — The Subscriber identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException
ObjectNotFoundException
e generateSubscriberPin () — This function returns unique Subscriber pin with
respect to codes registered on the local server. This function is helpful for
createSubscriber.
Returns:
string Pin Code which is a 6 digit number. For example: 215246.
Throws Exceptions:
ServerException
AccessDeniedException

45

Web Services API
Programmer’s Guide

generateAccessCode () — This function returns unique access code with respect
to codes registered on the local server. This function is helpful for
createSubscriber and createConfuser.
Returns:

string Access Code which is a 6 digit number. For example: 346217.
Throws Exceptions:

ServerException

AccessDeniedException
generateAccessCodeEx (long digits) — This function returns unique
access code with the length specified by the argument with respect to access codes
registered on the local server. This function is helpful for createSubscriber and
createConfuser.
Parameters:

digits — The length of the generated access code, should be from 1 till 13

Returns:
string Access Code which consists of digits, the length of the access code is

specified by the parameter digi ts of this function. For example: 481237854 (if
digits=9).

Throws Exceptions:
ServerException
AccessDeniedException

Subscribers’ Conference Users Management

getConfuser (long confuserId) — This function returns full details about the
Confuser referenced by ID.
Parameters:

confuserld — The Confuser identifier
Returns:

Confuser object
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
getConfusers (long offset, long limit, String filter,
String order) — This function returns the list of Confuser which match the given
filter. There are rare cases when this function needs to be called directly as
getSubscriber returns list of subordinate conference users.
Parameters:

offset - zero based offset in recordset.

limit - maximum number of objects to return.

filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more Confuser field names or composite
(compound) statement relative to conferencelnfo field names.

46 Web Services API
Programmer’s Guide

Acceptable operators: <=,>=, 1= =<, > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example pin='12' or pin like'%2%" or subscriberld >= 15.
Empty string or null means no filter.
order - A string specifying Subscriber field name and sort direction.
For example "pin" or "email desc". The default direction is asc and can be
omitted.
Empty string or null means no order.
Acceptable fields for filtering and sorting:
* accessCode
» confuserld
* dnisld
* role
* subscriberld
* conferencelnfo.conferenceNumber
Returns:
list of Confuser objects
Throws Exceptions:
ServerException
AccessDeniedException
e getConfusersCount (String filter) — This function returns number of
Confusers that match the given filter.
Parameters:
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Confuser field names or composite
(compound) statement relative to conferencelnfo field names.
Acceptable operators: <=, >= = =< > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example accessCode='1001" or subscriberld >= 15.
Acceptable fields for filtering:
* accessCode
» confuserld
* dnisld
* role
* subscriberld
« conferencelnfo.conferenceNumber
Empty string or null means no filter.
Returns:
long count of Confusers
Throws Exceptions:
ServerException
AccessDeniedException

47

Web Services API
Programmer’s Guide

createConfuser (Confuser confuser) — This function creates a new
Confuser. Please note that you can create Confusers by calling createSubscriber
and providing list of Confusers there.
Parameters:
confuser — The Confuser object
Required fields:
* subscriberld
* role
* dnisld
* accessCode
* conferencelnfo
Returns:
created Confuser object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException
updateConfuser (Confuser confuser) — This function updates Confuser
which is presented in confuser with the information from the structure. Please make
sure you filled all information that needs to be in the updated Confuser.
Recommendation is to call getConfuser first, change some info and then call

updateConfuser.
Parameters:

confuser — The Confuser object
Returns:

updated Confuser object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException
deleteConfuser (long confuserId) — This function deletes Confuser

referenced by the ID.
Parameters:
confuserld — The Confuser identifier
Returns:
void
Throws Exceptions:
ServerException

AccessDeniedException
ObjectNotFoundException

48 Web Services API
Programmer’s Guide

Conference Info Management

e getConferenceInfos (long offset, long limit, String
filter, String order) — This function returns list of Conflnfo objects which
are registered for the subscriber on which behalf this call is executed. For administrator
it returns list of all registered Conflnfo objects.

Parameters:
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Conflnfo field names.
Acceptable operators: <=,>=, |= =<, > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example conferenceNumber='12' or conferenceNumber like'%2%'.
Accepted fields:
* conferenceNumber
* description
Empty string or null means no filter.
order - A string specifying ConfInfo field name and sort direction.
For example "conferenceNumber" or "description desc". The default direction is
asc and can be omitted.
Empty string or null means no order.
Returns:
list of Conflnfo objects
Throws Exceptions:
ServerException
AccessDeniedException
Note:
This function was created in version 2.1 and did not exist in previous versions.

e getConferenceInfosCount (String filter) — Returns number of

Conflnfo objects that match the given filter.
Parameters:
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Conflnfo fields names.
Acceptable operators: <=,>=, |= =<, > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example conferenceNumber='12' or conferenceNumber like'%2%'.
Accepted fields:
* conferenceNumber
* description
Empty string or null means no filter.
Returns:
long count of Conflnfo objects
Throws Exceptions:
ServerException
AccessDeniedException

49 Web Services API
Programmer’s Guide

Note:
This function was created in version 2.1 and did not exist in previous versions.
e createConferenceInfo (ConfInfo confInfo) — This function creates a
new ConflInfo object. Pay attention to the list of mandatory fields to be filled in.

Parameters:
conflnfo — The ConfInfo object
Required fields:

* conferenceNumber (0 means create a new one — in this case description property
should contain new conference description and new conference number is being generated)
Note: if attributes property is populated only attributes with
isOverridden=true will be saved.
Returns:
created Conflnfo object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException
Note:
This function was created in version 2.1 and did not exist in previous versions.
e updateConferenceInfo (ConfInfo confInfo) — This function updates an
existing Conflnfo object.
Parameters:
conflnfo — The ConflInfo object
Returns:
updated Conflnfo object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException
o deleteConferenceInfo (long conferenceNumber) — This function
deletes ConfInfo object referenced by the conference number and all assigned confusers
(i.e. Confuser objects that refer to this conference number).
Parameters:
conferenceNumber — The conference number
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
Note:
This function was created in version 2.1 and did not exist in previous versions.

50 Web Services API
Programmer’s Guide

Conferences and Calls Management

e getConference (long conferencelId) — This function returns full details
about the Conference referenced by the ID.
Parameters:
conferenceld — The Conference identifier
Returns:
Conference object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e getConferences (long offset, long limit, String filter,
String order) — This function returns list of Conferences which are registered for
the subscriber on which behalf this call is executed.
Parameters:
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Conference field names.
Acceptable operators: <=,>= ==, <, > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example conferenceNumber='12' or conferenceNumber like'%2%' or duration
>= 15 or created like '%11/04/2011%'.
Accepted fields:
» conferenceld
* conferenceNumber
* created ('yyyy.MM.dd/hh:mm' format)
* duration
* participantCnt
* isSecured
* muteMode
Empty string or null means no filter.
order - A string specifying Conference field name and sort direction.
For example "conferenceNumber" or "created desc". The default direction is asc
and can be omitted.
Empty string or null means no order.
Returns:
list of Conference objects
Throws Exceptions:
ServerException
AccessDeniedException
e getConferencesCount (String filter) — This function returns number of
Conferences currently running on the server.
Parameters:
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Conference field names.

51 Web Services API
Programmer’s Guide

Acceptable operators: <=,>=, 1= =<, > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example conferenceNumber='12' or conferenceNumber like'%2%" or duration
>= 15 or created like '%11/04/2011%'.
Accepted fields:
» conferenceld
* conferenceNumber
* created ('yyyy.MM.dd/hh:mm' format)
* duration
* participantCnt
* isSecured
» muteMode
Empty string or null means no filter.
Returns:
long count of Conference objects
Throws Exceptions:
ServerException
AccessDeniedException
e getSession (long sessionId) — This function returns full details about the
call referenced by the ID provided.
Parameters:
sessionld — The Session identifier
Returns:
Session object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e getSessions (long offset, long limit, String filter,
String order) — This function returns list of Sessions (calls) which match the filter
provided. There are two parameters offset and limit which help to implement paging on
the web application. If this function is called from non admin Subscribers it will returns
only Sessions visible for this account. If call doesn’t present an access code yet — it is
visible only by admin.
Parameters:
conferenceld - Conference identifier. If parameter is less than zero Session objects
for all Conference will be returned.
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Session field names.
Acceptable operators: <=,>=, 1= =<, > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example addressTo="12' or addressTo like'%2%' or duration >= 15 or created
like '%11/04/2011%' or conferenceld=854123.
Accepted fields:

52 Web Services API
Programmer’s Guide

* sessionld
* subscriberld
* created ('yyyy.MM.dd/hh:mm' format)
¢ joined ('yyyy.MM.dd/hh:mm' format) (works only when joined the conference)
* duration
* status
» gaStatus (for sort order only, i.e. not for filters)
* role (works only when joined the conference)
* isMuted (works only when joined the conference) true/false values
* addressTo
* addressFrom
* conferenceNumber (works only when joined the conference)
» accessCode (works only when joined the conference)
* subconference (works only when joined the conference)
Empty string or null means no filter.
order - A string specifying Session field name and sort direction.
For example "caller" or "caller desc". The default direction is asc and can be
omitted.
Empty string or null means no order.
Returns:
list of Session objects
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e getSessionsCount (String filter) — This function returns number of calls
on the bridge which matches the filter provided.
Parameters:
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more Session field names.
Acceptable operators: <=, >= = =< > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example caller="12" or caller like'%2%' or duration >= 15 or created like
'%11/04/2011%' or conferenceld=854123.
Accepted fields:
* sessionld
* subscriberld
» created ('yyyy.MM.dd/hh:mm' format)
¢ joined ('yyyy.MM.dd/hh:mm' format) (works only when joined the conference)
* duration
* status
* role (works only when joined the conference)
« isMuted (works only when joined the conference) true/false values
* addressTo
* addressFrom
» conferenceNumber (works only when joined the conference)

53

Web Services API
Programmer’s Guide

* accessCode (works only when joined the conference)
* subconference (works only when joined the conference)
Empty string or null means no filter.
Returns:
long count of Session objects
Throws Exceptions:
ServerException
AccessDeniedException
hangupConference (long conferenceId) — This function causes all calls to
be dropped from the Conference and Conference to be terminated.
Parameters:
conferenceld — The Conference identifier
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
hangupSession (long sessionId) — This function disconnects the call
reference by the ID. If called not from admin account may return NonAuthorised
exception.
Parameters:
sessionld — The Session identifier
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
secureConference (long conferenceId) — This function moves a
Conference referenced by ID into the state when no new calls are allowed to get in
there.
Parameters:
conferenceld — The Conference identifier
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
unSecureConference (long conferenceId) — This function cancels effect
of secureConfernece, i.e. new calls can join the Conference.
Parameters:
conferenceld — The Conference identifier
Returns:
void

54

Web Services API
Programmer’s Guide

Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
holdConference (long conferenceId) — This function places the
conference on hold.
Parameters:

conferenceld — The Conference identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
unHoldConference (long conferencelId) — This function places the
conference off hold.
Parameters:

conferenceld — The Conference identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
holdSession (long sessionId) — This function places the call on hold.
Parameters:

sessionld — The Session identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
unHoldSession (long sessionId) — This function places the call off hold.
Parameters:

sessionld — The Session identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
muteConference (long conferencelId, long mode) — This function
mutes all participants (it doesn’t touch moderators). There are 3 mute modes Open (0) —
this is when all can speak or mute themselves Relaxed (1) — this is when all participants
muted, but they can un-mute themselves Strict (2) — this is when participants cannot un-

55

Web Services API
Programmer’s Guide

mute themselves. If Q&A is enabled they can put themselves into the question queue so
moderator can pick a questioner.
Parameters:
conferenceld — The Conference identifier
mode — The mute mode:
public static long MUTE MODE CLOSED = 2L
public static long MUTE MODE OPEN = OL
public static long MUTE MODE QUESTION = 1L
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
muteSession (long sessionId) — This function should be called when the
call referenced by ID should be muted.

Parameters:

sessionld — The Session identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
unMuteSession (long sessionId) — This function should be called when the
call referenced by ID should be un-muted.

Parameters:

sessionld — The Session identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException
ObjectNotFoundException
setCustomName (long sessionId, String name) — Sets the custom
name of the caller referenced by ID.
Parameters:
sessionld — The Session identifier
name — The custom name of the caller
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

56 Web Services API
Programmer’s Guide

e setSubconference (long[] sessionIds, String subconference)
— This function attaches (moves) callers to the sub-conference or detaches them from
the sub-conference.

Parameters:
sessionlds — The list of sessions identifiers that need to be attached (moved) to sub-
conference or detached from it
subconference — If the parameter is not empty, the sessions are being attached to
sub-conference (if they are not currently connected to any of the sub-conferences) or
moved to sub-conference (if they are currently connected to another sub-conference); non-
empty parameter represents the name of the sub-conference up to 16 characters length (only
letters and digits are allowed as the name of the sub-conference); if the parameter is empty
the sessions are being detached from the sub-conference
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException
Note:
This function was created in version 2.3 and did not exist in previous versions.

e gaEngage (long sessionId) — Engages Q&A session for the conference
participant referenced by ID. This function should be called when the host selected the
call to unmute during the Q&A session.

Parameters:

sessionld — The Session identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException
ObjectNotFoundException
e gaDisengage (long sessionId) — Disengages Q&A session for the

conference participant referenced by ID. This function should be called when the host
wants to mute the questioner and remove him from the question queue during Q&A
session.
Parameters:

sessionld — The Session identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException

57

Web Services API
Programmer’s Guide

gaEngageNext (long conferneceId) — Enables Q&A session for the first
call in the queue.
Parameters:
conferneceld — The conference identifier
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
gaSetMode (long conferenceld, long mode) — Starts, stops or clears
Q&A queue for the specific conference.
Parameters:
conferenceld — The conference identifier
mode — The Q&A conference mode:
public static long QA MODE CLOSED = 2L
public static long QA MODE OPEN = OL
public static long QA MODE CLEAR = 1L
Note: mode QA MODE CLOSED (2L) starts Q&A mode for the conference;
mode QA_ MODE OPEN (0L) stops Q&A mode for the conference; mode
QA _MODE CLEAR (1L) clears Q&A queue for the conference.
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
gaMuteMode (long conferenceld, long mode) — Mutes or un-mutes
active Q&A session for the specific conference.
Parameters:
conferenceld — The conference identifier
mode — The Q&A active session mode (0 — unmuted, 1 — muted):
public static long MUTE MODE OPEN = OL
public static long MUTE MODE RELAXED = 1L
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
startConferenceRecording (long conferenceld, String pin,
String accessCode) — This function starts the conference recording. If the
conference call flow is CONF, and the recording method (recording method) call
flow attribute value is either “Iocal+pin” or “remote+pin”, the subscriber’s pin
(that usually could be requested from the user) and the conference host access code

58

Web Services API
Programmer’s Guide

should be transferred to this method as its parameters pin and accessCode to
perform recording authorization. Otherwise these parameters should be empty.
Parameters:

conferenceld — The Conference identifier

pin — The Subscriber’s pin

accessCode — The host access code
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
stopConferenceRecording (long conferenceld) — This function stops
the conference recording.

Parameters:

conferenceld — The Conference identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
setConferencedJobCode (long conferenceld, String jobCode) —
Sets the specified job code for the specific started conference.

Parameters:

conferenceld — The conference identifier

jobCode — The job code that should be set
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
Note:

This function was created in version 2.4 and did not exist in previous versions.
getDialoutSubscribers (long conferenceNumber) — This function
returns the list of DialoutSubscriber objects that were previously stored for the specific
conference (Conference Info).

Parameters:
conferenceNumber — The number of conference which DialoutSubscriber objects

you would like to get

Returns:
list of DialoutSubscriber objects
Throws Exceptions:
ServerException
AccessDeniedException

59 Web Services API
Programmer’s Guide

ObjectNotFoundException
Note:
This function was created in version 2.3 and did not exist in previous versions.
e updateDialoutSubscribers (long conferenceNumber,
DialoutSubscriber[] dialoutSubscribers) — This function updates
DialoutSubscribers objects and associates them with the specific conference
(Conference Info).
Parameters:
conferenceNumber — The number of conference which DialoutSubscriber objects
you would like to update
dialoutSubscribers — The list of DialoutSubscriber objects that represents
information necessary to perform the specific dialout
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectValidationException

Note:
This function was created in version 2.3 and did not exist in previous versions.
e dialout (DialoutSubscriber[] dialoutSubscribers, String

attributes) — This function initiates outgoing calls to the specified phone numbers
and tries to connect specified callers to the specific conference. The list of information
necessary to perform the specific dial-outs presented in dialoutSubscribers
parameter; if the connection is successful the user will be joined to the conference
according to the access code and the conference DNIS number specified in list of
DialoutSubscriber objects. Parameter at t ributes can alter some dial-out logic.
Parameters:
dialoutSubscribers — The list of DialoutSubscriber objects that represents
information necessary to perform the specific dialout (such as conference DNIS number,
callers phone number to dialout, access code that should be used to connect to the
conference, and the custom user name that should be set to the caller)
attributes — The custom attributes that can alter some dial-out logic
Returns:
long count of successful dial-outs, i.e. number of calls that were successfully dialed
out to the conference
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
ObjectValidationException
e dialoutEx (String phoneNumber, String did, long
conferenceNumber, String accessCode, String attributes) —
This function initiates outgoing call to specified phone number and tries to connect the
participant to the specified conference using the access code provided.

60 Web Services API
Programmer’s Guide

Parameters:
phoneNumber — The phone number to dial-out
did — The bridge phone number the participant has to be connected to
conferenceNumber — The actual conference number
accessCode — The actual access code that should be used to connect to the
conference; to connect to sub-conference right after dialout the access code could be
formed as <actual access code> <sub-conference name>
attributes — The SIP Header that should be added to the call (or empty string if no
SIP header should be added)
Returns:
long identifier of the created session
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
ObjectValidationException
e startListen (long conferenceld, long targetlId, boolean
muted) — This function directly connects and starts listen/talk the conference
referenced by ID in the second parameter for the operator conference referenced by ID
in the first parameter (the same as *4 on touch tone keypad).
Parameters:
conferenceld — The Operator Conference identifier
targetld — The target Conference identifier (the conference to listen)
muted — The flag represents should the operator be muted (t rue) or should the
operator be able to talk (false) in the connected conference
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e stopListen (long conferenceld) — This function stops listen the conference
for the operator conference referenced by ID.
Parameters:
conferenceld — The Operator Conference identifier
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e joinConferences (long conferenceld, long targetId) — This
function connects, i.e. joins to the target conference referenced by ID in the second
parameter with the conference referenced by ID in the first parameter; both conferences
will be joined and the callers from these conferences will be able to talk to each other.

61

Web Services API
Programmer’s Guide
Parameters:
conferenceld — The source or Operator Conference identifier to join
targetld — The target Conference identifier to join
Returns:
void
Throws Exceptions:
ServerException

AccessDeniedException

ObjectNotFoundException
disconnectConferences (long conferenceld) — This function destroys
the link created between two conference using joinConferences function, i.e. it
disconnects the source or Operator conference and stops talking for this conference
referenced by ID.
Parameters:

conferenceld — The source or Operator Conference identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
startMonitoring (long conferenceId) — This function starts conference
monitoring (surveillance call) for the operator conference referenced by ID (the same as
*1 on touch tone keypad).
Parameters:

conferenceld — The Operator Conference identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
Note:

This function replaces startScan used in version 1.4.
stopMonitoring (long conferenceld) — This function stops conference
monitoring (surveillance call) for the operator conference referenced by ID.
Parameters:

conferenceld — The Operator Conference identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
Note:

This function replaces stopScan used in version 1.4.

62 Web Services API
Programmer’s Guide

e startTalk (long conferenceld, long sessionId) — This function
starts operator conversation with the user from operator queue; the operator conference
is referenced by the identifier specified in the first parameter, the call session is
referenced by the identifier specified in the second parameter, but if the call session ID
is negative or zero the first user from the operator queue will be taken to start his
conversation with the operator (the same as *2 on touch tone keypad).

Parameters:
conferenceld — The Operator Conference identifier
sessionld — The Session identifier to start talking with the operator or 0 to start
talking with the first user from the queue
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

e dropTalk (long conferenceId) — This functions stops current conversation
with the connected user for the operator conference referenced by ID and returns the
user to his conference or ivr (the same as * 3 on touch tone keypad); the operator is
ready to process the next user.

Parameters:
conferenceld — The Operator Conference identifier
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e rejectSession (long sessionId) — This functions rejects the specific
session referenced by ID from the operator queue, i.e. the conversion with the user will
be refused and the user will be removed from the operator queue.
Parameters:
sessionld — The Session identifier of the user that should be removed from the
operator queue
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e reattachCall (long sessionld, String did, String
accessCode, long role) — This function attaches the call to the conference.
Note, additional CDR record is being created for the reattached call.
Parameters:
sessionld — The Session identifier
did — The bridge phone number the participant has to be connected to

63 Web Services API
Programmer’s Guide

accessCode — The actual access code that should be used to connect to the
conference
role — The role (mode) that will be granted to the call in the conference:
public static long MODE HOST = 1L
public static long MODE LISTENER = 3L
public static long MODE PARTICIPANT = 2L
Note if the role can be determined using the access code it has higher priority
than the role.
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e setSessionRole (long sessionId, long role) — This function changes
the role of the call in the conference. Note: no additional CDR record is being created
for the call.
Parameters:
sessionld — The Session identifier
role — The role (mode) that will be granted to the call in the conference:
public static long MODE HOST = 1L
public static long MODE LISTENER = 3L
public static long MODE PARTICIPANT = 2L
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
Note:
This function was created in version 2.3 and did not exist in previous versions.
e setGainLevel (long sessionlId, long level) — Sets the microphone
volume level of the call referenced by ID.
Parameters:
sessionld — The Session identifier
level — The microphone volume level, it could be from -10 till 10 or 255; -10 is the
quietest (lowest) sound level, 10 is the loudest (highest) sound level, 255 denotes that the
microphone level is being automatically adjusted by the backend
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
Note:
This function was created in version 2.1 and did not exist in previous versions.

64

Web Services API
Programmer’s Guide

startPolling (long conferenceld, String keys) — This function
starts polling within specific conference with selected options (the same as #5 on touch
tone keypad).
Parameters:

conferenceld — The conference identifier

keys — Available options (digits 1, 2, ..., 9, 0)
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
Note:

This function was created in version 2.1 and did not exist in previous versions.
stopPolling (long conferencelId) — This function stops polling within
specific conference referenced by conference number (the same as #5 on touch tone
keypad).

Parameters:

conferenceld — The conference identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
Note:

This function was created in version 2.1 and did not exist in previous versions.
getPollingResults (long conferencelId) — This function allows getting
list of polling results for the specific conference referenced by the ID.

Parameters:

conferenceld — The Conference identifier
Returns:

list of PollingResult objects
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
Note:

This function was created in version 2.1 and did not exist in previous versions.

Subscribers’ Conferences Management

getSubscriberConferences (long offset, long limit, String
filter, String order) — This function returns the list of SubscriberConference
objects which match the given filter. Each of subscriber’s conference object represents
subscriber’s conference (either started or not started) and its subscriber information

65 Web Services API
Programmer’s Guide

with up to three conference users (for host, participant, and listener) information
describing this conference. So the conference information returned by this method is
always unique; if the conference is used by multiple subscribers the subscriber who first
created it will be returned.
Parameters:
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more SubscriberConference field names or
composite (compound) statement relative to Subscriber and Conferences fields names.
Acceptable operators: <=, >=, |=_ = <, > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example pin="12' or pin like'%2%" or subscriberld >= 15.
Empty string or null means no filter.
order - A string specifying SubscriberConference field name and sort direction.
For example "pin" or "email desc". The default direction is asc and can be
omitted.
Empty string or null means no order.
Subscriber related acceptable fields for filtering and sorting:
* subscriber.subscriberld
* subscriber.parentld
* subscriber.pin
* subscriber.password
* subscriber.firstName
* subscriber.lastName
* fullName
* subscriber.email
* subscriber.address1
* subscriber.city
* subscriber.state
* subscriber.zip
* subscriber.country
* subscriber.phoneNumber
* confuser.hostAccessCode
» confuser.participantAccessCode
» confuser.listenerAccessCode
» confuser.confuserld
» confuser.dnisld
* confuser.role
» confuser.subscriberld
» confuser.conferencelnfo.conferenceNumber
* confuser.dnis.did
Conference related acceptable fields for filtering and sorting:
* conference.conferenceld
« conference.conferenceNumber
» conference.created ('yyyy.MM.dd/hh:mm' format)
* conference.duration

66

Web Services API
Programmer’s Guide

* conference.participantCnt
* conference.isSecured
* conference.muteMode

Please note: all conference filters are being applied to the active conferences only!

Otherwise you can use the confuser.conferencelnfo filters (for example to filter by

the conference number you can use confuser.conferencelnfo.conferenceNumber

field).
Returns:

list of SubscriberConference objects
Throws Exceptions:

ServerException

AccessDeniedException
Note:

This function was created in version 2.2 and did not exist in previous versions.
getSubscriberConferencesCount (String filter) — This function
returns number of SubscriberConference that match the given filter, i.e. the number of
unique subscriber’s conferences.

Parameters:
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more SubscriberConference field names or
composite (compound) statement relative to Subscriber and Conferences fields names.

Acceptable operators: <=, >=, |= =<, > like (case sensitive), ilike (case

insensitive), and. Note: or-clauses and brackets are not supported.

For example pin='12' or pin like'%2%" or subscriberld >= 15.

Empty string or null means no filter.
Subscriber related acceptable fields for filtering and sorting:

* subscriber.subscriberld

* subscriber.parentld

* subscriber.pin

* subscriber.password

* subscriber.firstName

* subscriber.lastName

* fullName

* subscriber.email

* subscriber.address|

* subscriber.city

* subscriber.state

* subscriber.zip

* subscriber.country

* subscriber.phoneNumber

» confuser.hostAccessCode

» confuser.participantAccessCode

» confuser.listenerAccessCode

* confuser.confuserld

» confuser.dnisld

* confuser.role

67 Web Services API
Programmer’s Guide

» confuser.subscriberld
« confuser.conferencelnfo.conferenceNumber
» confuser.dnis.did
Conference related acceptable fields for filtering and sorting:
» conference.conferenceld
» conference.conferenceNumber
* conference.created ('yyyy.MM.dd/hh:mm' format)
* conference.duration
» conference.participantCnt
» conference.isSecured
* conference.muteMode
Please note: all conference filters are being applied to the active conferences only!
Otherwise you can use the confuser.conferencelnfo filters (for example to filter by
the conference number you can use confuser.conferencelnfo.conferenceNumber
field).
Returns:
long count of SubscriberConference objects
Throws Exceptions:
ServerException
AccessDeniedException
Note:
This function was created in version 2.2 and did not exist in previous versions.

CDRs Management

e getConferenceDR (long conferencelId) — This function returns full details
about the ConferenceDR referenced by the ID.
Parameters:
conferenceld — The Conference identifier
Returns:
ConferenceDR object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e getConferenceDRs (long offset, long limit, String filter,
String order) — This function returns list of ConferenceDRs which are registered
for the subscriber. For administrator it returns whole list of records. You can add
pruneEmpty keyword (case-sensitive) to your filter parameter if you wish to exclude the
conferences without audio calls, i.e. keep out the conferences that contain screen
sharing, video, and control calls only.
Parameters:
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more ConferenceDR field names.

68 Web Services API
Programmer’s Guide

Acceptable operators: <=, >=, |= =< > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example:
conferenceld = 5424
duration > 300 and duration < 400
duration > 300 and conferenceNumber = 160022
participantCnt > 2 and participantCnt < 22
created like '%11/04/2011%' and dropped >'2011.11.05/09:00'
conferenceNumber = 160022 pruneEmpty
created like '%11/04/2011%' and dropped > 2011.11.05/09:00' pruneEmpty
pruneEmpty
Accepted fields:
» conferenceld
* conferenceNumber
* created ('yyyy.MM.dd/hh:mm' format)
* dropped ('yyyy.MM.dd/hh:mm' format)
* duration
* participantCnt
Empty string or null means no filter.
order - A string specifying ConferenceDR field name and sort direction.
For example "conferenceNumber" or "created desc". The default direction is asc
and can be omitted.
Empty string or null means no order.
Returns:
list of ConferenceDR objects
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e getConferenceDRsCount (String filter) — This function returns number
of ConferenceDRs stored in local CDR db. You can add pruneEmpty keyword (case-
sensitive) to your filter parameter if you wish to exclude the conferences without audio
calls, i.e. keep out the conferences that contain screen sharing, video, and control calls
only.
Parameters:
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more ConferenceDR field names.
Acceptable operators: <=, >=, |= =< > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example:
conferenceld = 5424
duration > 300 and duration < 400
duration > 300 and conferenceNumber = 160022
participantCnt > 2 and participantCnt < 22
created like '%11/04/2011%' and dropped >'2011.11.05/09:00'
conferenceNumber = 160022 pruneEmpty

69 Web Services API
Programmer’s Guide

created like '%11/04/2011%' and dropped > '2011.11.05/09:00' pruneEmpty
pruneEmpty
Accepted fields:
» conferenceld
* conferenceNumber
* created ('yyyy.MM.dd/hh:mm' format)
* dropped (‘'yyyy.MM.dd/hh:mm' format)
* duration
* participantCnt
Empty string or null means no filter.
Returns:
long count of ConferenceDR objects
Throws Exceptions:
ServerException
AccessDeniedException
e getSessionDR (long sessionId) — This function returns full details about the
SessionDR referenced by the ID.
Parameters:
sessionld — The Session identifier
Returns:
SessionDR object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e getSessionDRs (long offset, long limit, String filter,
String order) — This function returns list of SessionDRs allowed to view.
Parameters:
offset — zero based offset in recordset.
limit — maximum number of objects to return.
filter — The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more SessionDR field names.
Acceptable operators: <= ,>=, |= = < > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example:
conferenceld = 5424
created > '2011.08.10/00:00' and created < '2011.08.20/00:00'
created like '%11/04/2011%' and dropped > '2011.11.05/09:00'
Accepted fields:
» conferenceld
* conferenceNumber
» created ('yyyy.MM.dd/hh:mm' format)
* dropped ('yyyy.MM.dd/hh:mm' format)
* duration
* role
* joined

70 Web Services API
Programmer’s Guide

* customName
* caller;
o callee;
* addressFrom;
¢ addressTo;
* accessCode;
* disconnectReason;
Empty string or null means no filter.
order — A string specifying SessionDR field name and sort direction.
For example "created desc". The default direction is asc and can be omitted.
Empty string or null means no order.
Returns:
list of SessionDR objects
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e getSessionDRsCount (String filter) — This function returns number of
SessionDRs stored in local CDR db.
Parameters:
filter — The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more SessionDR field names.
Acceptable operators: <=,>= == < > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example:
conferenceld = 5424
created > '2011.08.10/00:00' and created < '2011.08.20/00:00'
created like '%11/04/2011%' and dropped > '2011.11.05/09:00'
Accepted fields:
» conferenceld
* conferenceNumber
» created ('yyyy.MM.dd/hh:mm' format)
* dropped ('yyyy.MM.dd/hh:mm' format)
* duration
* role
* joined
* customName
e caller;
* callee;
* addressFrom;
e addressTo;
* accessCode;
* disconnectReason;
Empty string or null means no filter.
Returns:
long count of SessionDR objects

71 Web Services API
Programmer’s Guide

Throws Exceptions:
ServerException
AccessDeniedException
e getReportSummary (String reportType, String filter) — This
function returns reporting summary information for conferences, calls, and operator
statistic reports according to the specified filter. This information includes number of
conferences, number of calls and total calls duration in seconds.
Parameters:
reportType — The type of the report which summary you would like to get; it could
be one of the following values: conferences — for conferences report, i.e. summary data for
getConferenceDRs function will be returned if this reportType is specified; calls — for calls
report, i.e. summary data for getSessionDRs function will be returned if this is reportType
specified; operators — for operator statistic report, i.e. summary data for
getOperatorsStatistic function will be returned if this is reportType specified.
filter — The criteria to use to filter the report data. The criteria should be a simple sql
conditional statement started with one or more ConferenceDR / SessionDR field names
depending on the report type (see detail information for getConferenceDRs and
getSessionDRs functions).

Acceptable operators: <= ,>= == < > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
Accepted fields:

» created ('yyyy.MM.dd/hh:mm' format)
* dropped ('yyyy.MM.dd/hh:mm' format)
For example:
created >'2010.11.10/00:00' and created < '2010.11.20/00:00'
created like '%11/04/2011%' and dropped > '2011.11.05/09:00'
Returns:
string report summary information depending on the type of the report —
* conferences
conferences: <number of conferences>;calls:<number of calls joined to
these conferences>;seconds:<total duration of the calls joined to these
conferences in seconds>
* calls
calls:<number of calls>;seconds:<total duration of these calls in seconds>
* operators
total requests count:<number of requests users generated to
operators>;total _request answered:<number of requests answered by
operators>;average wait time:<average time users spent in the queue
waiting for operators>;
Throws Exceptions:
ServerException
AccessDeniedException
Note:
This function was created in version 2.2 and did not exist in previous versions.
e getCustomReportRecords (String reportType, long offset,
long limit, String filter, String order) — This function returns the

72 Web Services API
Programmer’s Guide

list of strings; each returned string represents custom report data separated by semicolon
(;) depending on the type of the report — either for DNIS report (dnises) or for
Disconnect report (disconnects) according to the specified filter and in the specified
order. The information returned by this function includes either DNIS numbers, number
of calls and total duration of the calls in seconds for DNIS report or disconnect reasons,
disconnect causes (standard Q.931 (ISDN) disconnect cause codes list can be used to
decode the disconnect reasons in ISDN messages®), and number of disconnects for
Disconnect report.
Parameters:
reportType — The type of the report which data you would like to get; it could be
one of the following values: dnises — for DNIS report, i.e. CDR data grouped by DNIS
number will be returned if this reportType is specified; disconnects — for Disconnect report,
i.e. CDR data grouped by the disconnect reason will be returned if this reportType is
specified.
offset — zero based offset in recordset.
limit — maximum number of objects to return.
filter — The criteria to use to filter the report data. The criteria should be a simple sql
conditional statement started with one or more field names depending on the report type
(see detail information below in accepted fields lists).
Acceptable operators: <=,>=, |= =< > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
Accepted fields for both report types:
* created ('yyyy.MM.dd/hh:mm' format)
* dropped ('yyyy.MM.dd/hh:mm' format)
* count
Accepted fields for dnises:
* dnis
* duration
Accepted fields for disconnects:
* disconnectReason
* disconnectCause
For example:
created >'2010.11.10/00:00' and created < '2010.11.20/00:00'
created like '%11/04/2011%' and dropped > 2011.11.05/09:00'
Note: if you use filter by count, this condition clause should be the last one.
order — A string specifying one of the above mentioned fields names and sort
direction.
For example "count desc". The default direction is asc and can be omitted.
Returns:
list of strings that represent semicolon-separated custom report information
depending on the type of the report —
* dnises

% You can find additional information regarding to Disconnect Cause Codes, including the complete list of the
codes using the following URLs:

e http://en.wikipedia.org/wiki/Q.931

e http://networking.ringofsaturn.com/Routers/isdncausecodes.php

http://en.wikipedia.org/wiki/Q.931
http://networking.ringofsaturn.com/Routers/isdncausecodes.php

73 Web Services API
Programmer’s Guide

<DNIS number>;<number of calls to this DNIS number>;<total duration of
the calls to this DNIS number in seconds>
* disconnects
<disconnect reason>;<disconnect cause>;<number of calls disconnected by
this reason and cause>
Throws Exceptions:
ServerException
AccessDeniedException
Note:
This function was created in version 2.2 and did not exist in previous versions.

e getCustomReportRecordsCount (String reportType, String
filter) — This function returns number of the specific custom report records that fit
with the specified filter. If the custom report type is dnises (DNIS report) this function
returns number of different DNIS numbers, if the custom report type is disconnects
(Disconnect report) this function returns number of different disconnect reasons — both
according to the filter that was specified.

Parameters:

reportType — The type of the report which data you would like to calculate; it could
be one of the following values: dnises — for DNIS report, i.e. CDR data grouped by DNIS
number will be counted up if this reportType is specified; disconnects — for Disconnect
report, i.e. CDR data grouped by the disconnect reason will be counted up if this
reportType is specified.

filter — The criteria to use to filter the report data. The criteria should be a simple sql
conditional statement started with one or more field names depending on the report type

(see detail information below in accepted fields lists).

Acceptable operators: <=,>=, ==, < > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
Accepted fields for both report types:
* created ('yyyy.MM.dd/hh:mm' format)
* dropped ('yyyy.MM.dd/hh:mm' format)
* count
Accepted fields for dnises:
* dnis
* duration
Accepted fields for disconnects:
* disconnectReason
* disconnectCause
For example:
created >'2010.11.10/00:00' and created < '2010.11.20/00:00'
created like '%11/04/2011%' and dropped > 2011.11.05/09:00'
Note: if you use filter by count, this condition clause should be the last one.
Returns:
long count of the custom report records depending on the type of the report —
* dnises
count of different DNIS numbers
* disconnects

74

Web Services API
Programmer’s Guide

count of different disconnect reasons
Throws Exceptions:

ServerException

AccessDeniedException
Note:

This function was created in version 2.2 and did not exist in previous versions.
getReportDetails (String reportType, String filter) — This
function returns reporting details information for conference calls according to the
specified filter. For the calls report type this information includes number of calls and
also audio, screen sharing, controlling, video, VoIP, toll and toll-free durations in
seconds.

Parameters:
reportType — The type of the report which details you would like to get; currently it

could be only the following value: calls — for calls report, i.e. details data for
getSessionDRs function will be returned if this is reportType specified.

filter — The criteria to use to filter the report data. The criteria should be a simple sql

conditional statement started with one or more SessionDR field names (see detail
information for getSessionDRs function).

Acceptable operators: <= ,>= == < > like (case sensitive), ilike (case

insensitive), and. Note: or-clauses and brackets are not supported.

Accepted fields:
» conferenceld
* conferenceNumber
* created ('yyyy.MM.dd/hh:mm' format)
* dropped ('yyyy.MM.dd/hh:mm' format)
* duration
* role
* joined
* customName
e caller;
* callee;
* addressFrom;
e addressTo;
* accessCode;
* disconnectReason;
Empty string or null means no filter.
For example:
conferenceld = 5424
created > '2011.08.10/00:00' and created < '2011.08.20/00:00'
created like '%11/04/2011%' and dropped > '2011.11.05/09:00'
conferenceld = '805345721" and and callee in ('"7605690159', '7605690161")
Returns:
array of string key/value pairs (Map<String, String>) depending on the report type —
* calls report keys:

75

Web Services API
Programmer’s Guide

count, audioDuration, screensharingDuration, controllingDuration,
videoDuration, tollDuration, voipDuration, tollFreeDuration (if the
considerTFDids filter is present)

Throws Exceptions:

ServerException

ObjectValidationException

AccessDeniedException
Note:

This function was created in version 3.1 and did not exist in previous versions.
setConferenceDRDescription (long conferenceld, String
description) — This function updates (set) conference data record description for
the specified ConferenceDR object referenced by the conference identifier according to
the specified new description parameter.

Parameters:

conferenceld — The conference identifier

description — New description that should be set to the conference data record

For example:

setConferenceDRDescription(16777264, "testing") to set the description equal
testing for the conference 16777264
Returns:

Updated ConferenceDR object, i.e. the object with new description set
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
Note:

This function was created in version 3.1 and did not exist in previous versions.
setConferenceDRPassword (long conferencelId, String
password) — This function updates (set) the conference recording password specified
in the parameter for the specified ConferenceDR object referenced by the conference
identifier. If the password is set for the conference recording, it should be entered to
download and/or playback the recording.

Parameters:
conferenceld — The conference identifier
password — New password (6 digits maximum) that should be set for the conference

recording

For example:
setConferenceDRPassword(16777264, "1122") to set the password equal /722
for the conference 16777264 recording

Returns:

Updated ConferenceDR object, i.e. the object with new recording password set
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException

76 Web Services API
Programmer’s Guide

Note:
This function was created in version 3.1 and did not exist in previous versions.

e listAudioFiles (long conferenceNumber, String pattern) — This
function returns the list of user’s audio files (recordings and uploaded streaming audio-
files) according to the specified pattern and conference number.

Parameters:
conferenceNumber — The conference number (note: it is not conferenceld)
pattern — The filename wildcard pattern
Returns:
list of FileDescriptor objects
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException

e deleteAudioFiles (long conferenceNumber, String pattern) —
This function deletes user’s audio files (recordings and uploaded streaming audio)
according to the specified pattern and conference number.

Parameters:
conferenceNumber — The conference number (note: it is not conferenceld)
pattern — The filename wildcard pattern
For example:
deleteAudioFiles(223344, "16777264.*") to delete all audio files for the
conference with the number 223344 and the identifier /16777264)
Returns:
long number of deleted files
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
Note:
This function is obsolete (deprecated); it may be removed at some version in the
future. Use deleteRecording method instead of it.

e deleteRecording (long conferenceld, String extension) — This
function deletes user’s conference recording files (audio, video, screen sharing
recordings and uploaded streaming audio) according to the specified extension and
conference identifier.

Parameters:

conferenceld — The conference identifier

extension — The recording extension (for example mp4) to delete specific recording

file or use empty string “” (or “*”) to delete all the conference recording files
For example:
deleteRecording(16777264, "mp4") to delete generated mp4 custom extension
screen sharing video file for the conference with the identifier 16777264

Returns:

ConferenceDR object

77

Web Services API
Programmer’s Guide

Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
Note:

This function was created in version 3.1 and did not exist in previous versions.
updateFileDescriptor (long conferenceNumber,
FileDescriptor fileDescriptor) — This function allows to change the file
description only.

Parameters:

conferenceNumber — The conference number (note: it is not conferenceld)

fileDescriptor — The FileDescriptor object (with correct description) to update
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException

ObjectValidationException
shareRecording (long conferenceld, DateTime expirePeriod,
boolean allowDownload) — Usually to get access to the recorded conference
files the user should be authorized on the bridge. This function should be used if it is
necessary to generate the link to the conference audio files that will be available without
authorization; this link will be temporary available and it will be valid limited time
only; using this URL any users will be able to listen (download) recording without
authorization. The recorded files URL is stored in the recordingUrl property of the
ConferenceDR object; the shared recorded files URL, created by this function, is stored
in the sharedRecordingUrl property of the ConferenceDR object.

Parameters:

conferenceld — The Conference identifier reference number

expirePeriod — The period of time over which the shared link will be invalidated

allowDownload — The flag showing whether mp3 download is allowed or

disallowed

Returns:

string shared recording URL
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
convertRecording (long conferenceld, String extension) —
Starts conversion to the custom screen sharing video recording extension format.
Currently custom extension mp4-format only is supported. Note that the screen sharing
video conversion to the custom format is the slow process; this method only starts
conversion which is asynchronous process; so if you check processingStatus property
right after you ran this method, it would indicate that the conversion is not completed
yet.

78

Web Services API
Programmer’s Guide

Parameters:

conferenceld — The conference identifier

extension — The custom screen video recording extension format (mp4)

For example:

convertRecording(16777264, "mp4") to convert the conference /16777264 screen
sharing video to the custom mp4-format
Returns:

ConferenceDR object
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
Note:

This function was created in version 3.1 and did not exist in previous versions.
getProcessingStatus (long conferenceld, String extension) —
Returns current screen sharing video file conversion status. As extension parameter use
empty string for default screen sharing flv-file processing status, or the custom
extension format (currently custom mp4-format only is supported) for its processing
status. The returned status could be from 0 (if conversion is not started) till 100 (if
conversion is completed), or -1 in case of any processing error).

Parameters:
conferenceld — The conference identifier
extension — The custom screen video recording extension format (mp4) or empty

string (“’) for default £1v file

For example:
getProcessingStatus(16777264, "mp4") to get the conference 16777264 screen
sharing video conversion to the custom mp4-format status
Returns:

long processing status
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException
Note:

This function was created in version 3.1 and did not exist in previous versions.
getDtmfHistory (long sessionId) — This function returns list of DTMF
commands for the specific Session or SessionDR object referenced by the ID.
Parameters:

sessionld — The Session identifier
Returns:

list of DtmfEvent objects
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException

79 Web Services API
Programmer’s Guide

Note:
This function was created in version 2.1 and did not exist in previous versions.
e getOperatorsStatistic (long offset, long limit, String
filter, String order) — This function allows getting list of OperatorStatistic
objects. To implement paging you can call it with the proper offset and limit.
Parameters:
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more OperatorStatistic field names.
Acceptable operators: <=,>=, |= =, < > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example:
created like '%11/04/2011%' and created >'2011.11.05/09:00'
Accepted fields:
* created ('yyyy.MM.dd/hh:mm' format)
Empty string or null means no filter.
order - A string specifying OperatorStatistic field name and sort direction.
For example "created desc". The default direction is asc and can be omitted.
Empty string or null means no order.
Returns:
list of OperatorStatistic objects
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
Note:
This function was created in version 2.1 and did not exist in previous versions.
e getOperatorsStatisticCount (String filter) — This function returns
number of OperatorStatistic objects according to specified filter.
Parameters:
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more OperatorStatistis field names.
Acceptable operators: <=, >=, |= =< > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example:
created like '%11/04/2011%' and created > '2011.11.05/09:00'
Accepted fields:
* created ('yyyy.MM.dd/hh:mm' format)
Empty string or null means no filter.
Returns:
long count of OperatorStatistic objects
Throws Exceptions:
ServerException
AccessDeniedException

80 Web Services API
Programmer’s Guide

Note:
This function was created in version 2.1 and did not exist in previous versions.

Call Flow and DNIS Management

e getCallFlow (long callFlowId) — This function returns full details about the
CallFlow referenced by the ID provided.
Parameters:
callFlowld — The CallFlow identifier
Returns:
CallFlow object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e getCallFlows (long offset, long limit, String filter,
String order) — This function returns list of CallFlows which match the filter
provided. There are two parameters offset and /imit to help to implement paging on the
web application. Please note that by default the attributesTemplate field in returned call
flows is populated with call flow attributes for each returned call flow; if you are
getting large number of call flows and/or would like to avoid huge amount of data to be
transferred in case if big request is processing call flow objects, to suppress call flow
attributes for call flows using this command (i.e. to return null as attributesTemplate
field value), you should add stripAttributes keyword (case-sensitive) to your filter
parameter.
Parameters:
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more CallFlow field names.
Acceptable operators: <=, >= =, =<, > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example name="12" or name like'%2%' or collFlowld >= 15.
Accepted fields:
» callFlowld
* name
* path
Filter samples:
name='"SPECTEL'
name like '%C%' stripAttributes
stripAttributes
Empty string or null means no filter.
order - A string specifying CallFlow field name and sort direction.
For example "name" or "name desc". The default direction is asc and can be
omitted.
Empty string or null means no order.

81 Web Services API
Programmer’s Guide

Returns:
list of CallFlow objects
Throws Exceptions:
ServerException
AccessDeniedException
e getCallFlowsCount (String filter) — This function returns number of
CallFlows on the bridge which match the filter provided.
Parameters:
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more CallFlow field names.
Acceptable operators: <=, >=, |=_ =< > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example name='12' or name like'%2%' or collFlowld >= 15.
Accepted fields:
» callFlowld
* name
* path
Empty string or null means no filter.
Returns:
long count of CallFlow objects
Throws Exceptions:
ServerException
AccessDeniedException
e getDNIS (long dnisId) — This function returns full details about the DNIS
referenced by the ID provided.
Parameters:
dnisld — The DNIS identifier
Returns:
DNIS object
Throws Exceptions:
ServerException
AccessDeniedException
ObjectNotFoundException
e getDNISCount (String filter) — This function returns number of DNISes on
the bridge which match the filter provided.
Parameters:
filter - The criteria to use to filter the rows. The criteria should be a simple sql
conditional statement started with one or more DNIS field names.
Acceptable operators: <=,>=, 1=, =<, > like (case sensitive), ilike (case
insensitive), and. Note: or-clauses and brackets are not supported.
For example did='12' or did like'%2%" or callFlowld >= 15.
Accepted fields:
» callFlowld
* dnisld
* did
* description

82

Web Services API
Programmer’s Guide

» alias.mask
» alias.description
Empty string or null means no filter.
Returns:
long count of DNIS objects
Throws Exceptions:
ServerException
AccessDeniedException
getDNISes (long offset, long limit, String filter, String
order) — This function returns list of DNISes (phone numbers) which match the filter
provided. There are two parameters offset and /imit to help to implement paging on the
web application. Please note that by default the attributes field in DNIS is populated
with call flow attributes for each returned DNIS number; if you are getting large
number of DNISes and/or would like to avoid huge amount of data to be transferred in
case if big request is processing DNIS objects, to suppress call flow attributes for DNIS
numbers using this command (i.e. to return null as attributes tield value), you should
add stripAttributes keyword (case-sensitive) to your filter parameter.
Parameters:
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sql

conditional statement started with one or more DNIS field names.

Acceptable operators: <=, >= = =<, > like (case sensitive), ilike (case

insensitive), and. Note: or-clauses and brackets are not supported.

Filter samples:
did ='12'
did like'%2%' or callFlowld >= 15
did like '%12%" stripAttributes
alias.mask like '%22%' and description like 'test%' stripAttributes
stripAttributes

Empty string or null means no filter.

order - A string specifying DNIS field name and sort direction.
For example "name" or "name desc". The default direction is asc and can be

omitted.

Accepted fields:
» callFlowld
* dnisld
« did
* description
» alias.mask
» alias.description
Empty string or null means no order.
Returns:
list of DNIS objects
Throws Exceptions:
ServerException

83

Web Services API
Programmer’s Guide

AccessDeniedException
updateCallFlow (CallFlow callflow) — The method updates CallFlow
object.
Parameters:

callflow — The CallFlow object
Returns:

updated CallFlow object
Throws Exceptions:

ServerException

AccessDeniedException

ObjectValidationException
createDNIS (DNIS dnis) — This function creates a new DNIS with the details
specified in the input parameter. Please note that only administrator can create new
DNISes.

Parameters:
dnis — The DNIS object
Returns:

created DNIS object
Throws Exceptions:

ServerException

AccessDeniedException

ObjectValidationException
updateDNIS (DNIS dnis) — This function updates DNIS with the new
information. Please note that only administrator has a permission to update DNIS.
Parameters:

dnis — The DNIS object
Returns:

updated DNIS object
Throws Exceptions:

ServerException

AccessDeniedException

ObjectValidationException
deleteDNIS (long dnisId) — This function deletes DNIS referenced by the ID
from the server. When DNIS is being deleted all confusers (conference accounts)
associated with this DNIS also are being deleted. Please note that only administrator has
a permission to delete DNIS.
Parameters:

dnisld — The DNIS identifier
Returns:

void
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException

84

Web Services API
Programmer’s Guide

getServerAttributes () — This function returns list of system attributes
(settings) registered on the bridge along with the current values, i.e. separate Attribute
Name — Attribute Value pairs.
Returns:

list of attributes (Attribute objects)
Throws Exceptions:

ServerException

AccessDeniedException
setServerAttributes (Attribute[] attributes) — This function
allows setting new values to the system attributes, i.e. separate Attribute Name —

Attribute Value pairs.
Parameters:
attributes — The list of Attribute objects that need to be updated
Returns:
void
Throws Exceptions:
ServerException

AccessDeniedException

ObjectValidationException
getAttributesDescription (long callflowId) — This function returns
the list of call flow attributes with their description for the CallFlow object specified by
its identifier. The attribute description is being returned in the value field of the returned
call flow Attribute object.
Parameters:

callflowld — The CallFlow identifier
Returns:

list of Attribute objects
Throws Exceptions:

ServerException

AccessDeniedException

ObjectNotFoundException

Backend and Frontend Services Management

getVersion () — Returns version of the installed software (like 3.1.133 for the
current version).
Returns:

string product version
Throws Exceptions:

ServerException

AccessDeniedException

ObjectValidationException
getBackendInfo () — Returns some statistic about backend.
Returns:

string status of Backend Service in the textual format

85

Web Services API
Programmer’s Guide

Returns Sample:
Welcome to WYDE.MPs admin console 3.1.133 compiled Apr 11
2012>Started: Sun Apr 15 14:41:53 2012Call: Now=0; Total=19;
Peak=5; Last=Mon Apr 16 14:44:00 2012Conf: Now=0; Total=9;
Peak=1; Last=Mon Apr 16 14:44:00 2012Brds: Now=1
Throws Exceptions:
ServerException
AccessDeniedException
getFrontendInfo (String group) — Returns some statistic about frontend.
Parameters:
group — group name, for example cmdcount-show, confcount-show,
errcount-show, partcount-show, etc. (service functions)
Returns:
string status of Frontend Service in the textual format
Throws Exceptions:

ServerException

AccessDeniedException
isBackendUp () — Returns true if backend is up and running.
Returns:

Boolean true if Backend Service is OK, otherwise — false
Throws Exceptions:
ServerException
AccessDeniedException
isFrontendUp () — Returns true if frontend is up and running and state can not be
determined.
Returns:
Boolean true if frontend is up and running, otherwise — false
Throws Exceptions:
ServerException
AccessDeniedException
startBackend () — Tries to start backend with the settings from the DB.
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
stopBackend () — Tries to stop backend.
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException
startFrontend () — Tries to start frontend with the settings from the DB.
Returns:
void

86

Web Services API
Programmer’s Guide

Throws Exceptions:
ServerException
AccessDeniedException
stopFrontend () — Tries to stop frontend.
Returns:
void
Throws Exceptions:
ServerException
AccessDeniedException

Exceptions

ServerException — This exception is thrown to indicate that internal server-side
error occurred.

AccessDeniedException — This exception is thrown to indicate that a requested
access (to an object or method) is denied. The request access can be denied according to
the security policy.

ObjectNotFoundException — This exception is thrown to indicate that requested
object can not be found.

ObjectValidationException — This exception is thrown to indicate that
specified object can not be saved in its current state. Exception contains the collection
of field names that should be checked in fieldname property. There are two possible
reasons: this field is mandatory (if current value is null) or incorrect value.

If any of these exceptions occurred for all these exceptions msg property contains detail
description of the error, i.e. the message that could help to determine the reason of the error.

Constants

Subscriber

public static int ROLE ADMIN = 1L
public static int ROLE OPERATOR = 2L
public static int ROLE USER = 3L

Conference

public static long MUTE MODE CLOSED = 2L
public static long MUTE MODE OPEN = OL
public static long MUTE MODE QUESTION = 1L
public static long QA MODE CLOSED = 2L
public static long QA MODE OPEN = OL

public static long QA MODE CLEAR = 1L
public static long HOLD MODE HOST = 1L
public static long HOLD MODE PARTICIPANT = 2L
public static long HOLD MODE LISTENER = 4L
public static long CONFERENCE REGULAR = OL
public static long CONFERENCE OPERATOR = 1L

87 Web Services API
Programmer’s Guide

public static long CONFERENCE LISTEN = 2L
public static long CONFERENCE AUTOLISTEN = 3L
public static long CONFERENCE AUTOLISTEN SLEEP = 4L
public static long CONFERENCE TALK = 5L

e Session
public static long MODE HOST = 1L
public static long MODE LISTENER = 3L
public static long MODE PARTICIPANT = 2L
public static long MODE UNDEFINED = OL
public static long MODE DC LINK = 8L
public static long OPERATOR STATUS IDLE = OL
public static long OPERATOR STATUS WAIT 1L
public static long OPERATOR STATUS TALK 2L
public static long QA STATUS ACTIVE = 2L
public static long QA STATUS IDLE = OL
public static long QA STATUS RISEDHAND = 1L
public static long STATUS CLOSED = 3L
public static long STATUS CONFERENCE = 2L
public static long STATUS DIALING = 4L
public static long STATUS IVR = 1L

e SessionDR
public static long INITIATOR BRIDGE = 2L
public static long INITIATOR UNDEFINED = OL
public static long INITIATOR USER = 1L

e Attribute
public static long TYPE STRING = OL
public static long TYPE BILLINGRULE = 1L
public static long TYPE INT = 2L
public static long TYPE DTMF 3L
public static long TYPE ROLE = 4L
public static long TYPE CHOICE = 5L
public static long ROLE CALLFLOW = 3L
public static long ROLE CONFERENCE = 1L
public static long ROLE DNIS = OL

88 Web Services API
Programmer’s Guide

Appendix A: Code Samples

WYDE Web Services Initialization

Sample of WYDE Web Services Initialization
/ *

Sample of WYDE Web Services Initialization

*/

using System;

using System.Xml;

using System.Text;

using System.Net;

using System.Net.Security;

using System.Security.Cryptography.X509Certificates;
using WydeWS.jAdmin;

namespace WYDEWS
{
/// <summary>
/// Represents base class for the WYDE web services class (jAdmin)
/// </summary>
class myJAdmin : jAdmin.jAdmin
{
protected override System.Net.WebRequest GetWebRequest (Uri uri)
{
System.Net.HttpWebRequest webRequest =
(System.Net.HttpWebRequest)base.GetWebRequest (uri) ;
webRequest.ProtocolVersion =
System.Net.HttpVersion.VersionlO;
return webRequest;

// Custom certificate policy callback used to force the certificate to be accepted
ServicePointManager.ServerCertificateValidationCallback =
new RemoteCertificateValidationCallback (
delegate (object sender2, X509Certificate certificate,
X509Chain chain, SslPolicyErrors sslPolicyErrors)
{
return true;

}) i

// Define web request object for WYDE web services
System.Net.HttpWebRequest webRequest =
(System.Net.HttpWebRequest)base.GetWebRequest (uri) ;
webRequest.ProtocolVersion =
System.Net.HttpVersion.VersionlO;
return webRequest;

}

/// <summary>
/// Represents entire jAdmin web service helper class
/// </summary>
public class clsjAdmin
{
#region [private fields]
private myJAdmin ws;
private String mLastError;
#endregion

#region [constructors and destructors]

/// <summary>

/// Initializes a new instance of the class (constructor).
/// </summary>

public clsjAdmin ()

{

89

Web Services API

Programmer’s Guide

const String PROC = "clsjAdmin (constructor)";
String strZone = "";
try

{

}

// Initialize web service
strZone = "new myJAdmin()";
ws = new myJAdmin();

// WebServiceURL, WebServiceUser, WebServicePassword,
// WebServiceTimeout parameters: app.config
strZone = "set web service Url";
if (!String.IsNullOrEmpty (Utils.AppSettings ("WebServiceURL")))
{
ws.Url = Utils.AppSettings ("WebServiceURL") ;
}

strZone = "new NetworkCredential()";
if (!String.IsNullOrEmpty (Utils.AppSettings ("WebServiceUser")))
{
ws.Credentials = new System.Net.NetworkCredential (
Utils.AppSettings ("WebServiceUser"),
Utils.AppSettings ("WebServicePassword")) ;
}

strZone = "set web service Timeout";
if (Utils.Data2Int (Utils.AppSettings ("WebServiceTimeout")) > 0)
{

ws.Timeout = Utils.Data2Int (Utils.AppSettings ("WebServiceTimeout")) ;

}

strZone = "getVersion";
ws.getVersion(); // Check if initialization was successful

catch (Exception ex)

{

mLastError = "Error in " + this.GetType().FullName + "." +
PROC + " (" + strZone + "): " + ex.Message;
}

}
/// <summary>
/// Performs deterministic clean up of the class (destructor).
/// </summary>
~clsjAdmin ()

{

ws.Dispose () ;

}

#endregion

#region [properties]

/77

#endregion

#region [private methods]

/77

#endregion

#region [public methods]

/77

#endregion

90 Web Services API
Programmer’s Guide

app.config

<?xml version="1.0" encoding="utf-8" 2>
<configuration>
<configSections>
<sectionGroup name="applicationSettings"
type="System.Configuration.ApplicationSettingsGroup, System, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089" >
<section name="WYDEWS.Properties.Settings"
type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" requirePermission="false" />
</sectionGroup>
</configSections>
<system.serviceModel>
<bindings />
<client />
</system.serviceModel>

<appSettings>
<add key="WebServiceURL" value="https://192.168.1.30/dnca/jAdmin"/>
<add key="WebServiceUser" value="admin"/>
<add key="WebServicePassword" value="admin"/>
<add key="WebServiceTimeout" value="120000"/> <!-- in milliseconds -->
</appSettings>

<applicationSettings>
<WYDEWS.Properties.Settings>
<setting name="WYDEWS jAdmin jAdmin" serializeAs="String">
<value>https://192.168.1.30/dnca/jAdmin</value>
</setting>
</WYDEWS.Properties.Settings>
</applicationSettings>
</configuration>

91 Web Services API
Programmer’s Guide

Web Methods’ XML Requests and Responses

Sample of XML Request for Function with Multiple Parameters Sent

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlins:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<soap:Body>
<getSessionDRs xmIns="dnca">
<offset>0</offset>
<limit>3</limit>
<filter>created>='2009-10-01' and conferenceNumber=667788</filter>
<order />
</getSessionDRs>
</soap:Body>
</soap:Envelope>

92 Web Services API
Programmer’s Guide

Sample of XML Response for Function with List of Objects Received

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soap:Body>
<nsl:getSessionDRsResponse xmins:nsl="dnca">
<nsl:out>
<ns2:SessionDR xmlns:ns2="http://data.dnca.datanaut.com">
<accessCode xmins="http://data.dnca.datanaut.com"> 11233 </accessCode>
<addressFrom xmins="http://data.dnca.datanaut.com">
"MZ 2003"<sip:3131@192.168.1.30></addressFrom>
<addressTo xmIns="http://data.dnca.datanaut.com">
"12_11233" <sip:12_11233@192.168.1.30></addressTo>
<bridgeName xmlIns="http://data.dnca.datanaut.com" xsi:nil="true" />
<callee xmIins="http://data.dnca.datanaut.com">12</callee>
<caller xmIns="http://data.dnca.datanaut.com">3131</caller>
<conferenceld xmins="http://data.dnca.datanaut.com">
39750</conferenceld>
<conferenceNumber xmIns="http://data.dnca.datanaut.com">
667788</conferenceNumber>
<created xmins="http://data.dnca.datanaut.com">
2009-10-30T08:49:08-07:00</created>
<customName xmlIns="http://data.dnca.datanaut.com">
'MZ 2003'</customName>
<disconnectlnitiator xmins="http://data.dnca.datanaut.com">
1</disconnectlnitiator>
<disconnectReason xmlns="http://data.dnca.datanaut.com">
Normal</disconnectReason>
<duration xmins="http:/ /data.dnca.datanaut.com">
91 </duration>
<jobCode xmins="http://data.dnca.datanaut.com" xsi:nil="true" />
<joined xmlIns="http://data.dnca.datanaut.com">
2009-10-30T08:49:10-07:00</joined>
<nodeName xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
<role xmins="http://data.dnca.datanaut.com">1</role>
<sessionld xmIns="http://data.dnca.datanaut.com">142018</sessionld>
<subscriberld xmIns="http://data.dnca.datanaut.com" xsi:nil="true" />
</ns2:SessionDR>
<ns2:SessionDR xmlns:ns2="http://data.dnca.datanaut.com">
<accessCode xmIns="http://data.dnca.datanaut.com">1233</accessCode>
<addressFrom xmins="http://data.dnca.datanaut.com">
"unknown" <sip:192.168.1.9></addressFrom>
<addressTo xmIns="http://data.dnca.datanaut.com">
"12_1233" <sip:12_1233@192.168.1.30></addressTo>
<bridgeName xmlIns="http://data.dnca.datanaut.com" xsi:nil="true" />
<callee xmIns="http://data.dnca.datanaut.com">12</callee>
<caller xmIns="http://data.dnca.datanaut.com" />
<conferenceld xmins="http://data.dnca.datanaut.com">
39749</conferenceld>
<conferenceNumber xmlIns="http://data.dnca.datanaut.com">
667788</conferenceNumber>
<created xmins="http://data.dnca.datanaut.com">
2009-10-30T08:47:38-07:00</created>
<customName xmlIns="http://data.dnca.datanaut.com">
'unknown'</customName>

93

Web Services API
Programmer’s Guide

<disconnectlnitiator xmins="http://data.dnca.datanaut.com">
1</disconnectlInitiator>

<disconnectReason xmins="http://data.dnca.datanaut.com">
Normal</disconnectReason>

<duration xmlns="http://data.dnca.datanaut.com">87</duration>

<jobCode xmins="http://data.dnca.datanaut.com" xsi:nil="true" />

<joined xmIns="http://data.dnca.datanaut.com">
2009-10-30T08:47:40-07:00</joined>

<nodeName xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />

<role xmIins="http://data.dnca.datanaut.com">2</role>

<sessionld xmIns="http://data.dnca.datanaut.com">142017</sessionld>

<subscriberld xmIns="http://data.dnca.datanaut.com" xsi:nil="true" />

</ns2:SessionDR>
<ns2:SessionDR xmlns:ns2="http://data.dnca.datanaut.com">

<accessCode xmins="http://data.dnca.datanaut.com">1233</accessCode>
<addressFrom xmins="http://data.dnca.datanaut.com">
"MZ 2003"<sip:3131@192.168.1.30></addressFrom>
<addressTo xmIns="http://data.dnca.datanaut.com">
"12_1233" <sip:12_1233@192.168.1.30></addressTo>
<bridgeName xmIns="http://data.dnca.datanaut.com" xsi:nil="true" />
<callee xmins="http://data.dnca.datanaut.com">12</callee>
<caller xmIns="http://data.dnca.datanaut.com">3131</caller>
<conferenceld xmins="http://data.dnca.datanaut.com">
39749</conferenceld>
<conferenceNumber xmIns="http://data.dnca.datanaut.com">
667788</conferenceNumber>
<created xmins="http://data.dnca.datanaut.com">
2009-10-30T08:45:49-07:00</created>
<customName xmlIns="http://data.dnca.datanaut.com">
'MZ 2003'</customName>
<disconnectlnitiator
xmlns="http://data.dnca.datanaut.com">1</disconnectlnitiator>
<disconnectReason xmins="http://data.dnca.datanaut.com">
Normal</disconnectReason>
<duration xmlns="http://data.dnca.datanaut.com">195</duration>
<jobCode xmins="http://data.dnca.datanaut.com" xsi:nil="true" />
<joined xmIns="http://data.dnca.datanaut.com">
2009-10-30T08:45:51-07:00</joined>
<nodeName xmlns="http://data.dnca.datanaut.com" xsi:nil="true" />
<role xmIins="http://data.dnca.datanaut.com">2</role>
<sessionld xmIins="http://data.dnca.datanaut.com">142016</sessionld>
<subscriberld xmIns="http://data.dnca.datanaut.com" xsi:nil="true" />

</ns2:SessionDR>
</nsl:out>
</nsl:getSessionDRsResponse>
</soap:Body>

</soap:Envelope>

94 Web Services API
Programmer’s Guide

Sample of XML Request for Function with the Object Parameter Sent

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:xsd="http:/ /www.w3.0rg/2001/XMLSchema">
<soap:Body>
<createSubscriber xmlns="dnca">
<s>
<addressl xsi:nil="true" xmins="http://data.dnca.datanaut.com" />
<address2 xsi:nil="true" xmins="http://data.dnca.datanaut.com" />
<city xmIns="http://data.dnca.datanaut.com">New-York</city>
<confusers xmins="http://data.dnca.datanaut.com">
<Confuser>
<accessCode>201130</accessCode>
<attributes xsi:nil="true" />
<conferencelnfo>
<description>MMC_JKRAFT</description>
</conferencelnfo>
<dnisld>19</dnisId>
<role>1</role>
</Confuser>
<Confuser>
<accessCode>637387</accessCode>
<attributes xsi:nil="true" />
<conferencelnfo xsi:nil="true" />
<dnisld>19</dnisId>
<role>2</role>
</Confuser>
<Confuser>
<accessCode>451665</accessCode>
<attributes xsi:nil="true" />
<conferencelnfo xsi:nil="true" />
<dnisld>19</dnisId>
<role>3</role>
</Confuser>
</confusers>
<country xmIns="http://data.dnca.datanaut.com">US</country>
<details xsi:nil="true" xmins="http://data.dnca.datanaut.com" />
<email xmlns="http://data.dnca.datanaut.com">
jkraft@phone-mobile.com</email>
<firstName xmlns="http://data.dnca.datanaut.com">Julie</firstName>
<lastName xmIns="http://data.dnca.datanaut.com">Kraft</lastName>
<password xmIns="http://data.dnca.datanaut.com">321</password>
<phoneNumber xmIns="http://data.dnca.datanaut.com">
(204) 221-7600</phoneNumber>
<pin xmIns="http://data.dnca.datanaut.com">jkraft</pin>
<zip xsi:nil="true" xmins="http://data.dnca.datanaut.com" />
</s>
</createSubscriber>
</soap:Body>
</soap:Envelope>

95

Web Services API
Programmer’s Guide

Sample of XML Response for Function with the Object Received

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<soap:Body>

<nsl:createSubscriberResponse xmins:nsli="dnca">

<nsl:out>

<addressl xmins="http://data.dnca.datanaut.com" xsi:nil="true" />
<address2 xmIns="http://data.dnca.datanaut.com" xsi:nil="true" />
<city xmIns="http://data.dnca.datanaut.com">New-York</city>

<confusers xmlns="http://data.dnca.datanaut.com">

<Confuser>

<accessCode>201130</accessCode>

<attributes>
<Attribute>
<enumValues />

<isOverridden>false</isOverridden>

<name>call_announceparticipantcount</name>

<role>1</role>
<type>0</type>
<value>hpl</value>
</Attribute>
<Attribute>
<enumValues />

<isOverridden>false</isOverridden>
<name>call_exit_dtmf</name>

<role>1</role>
<type>0</type>
<value />
</Attribute>
<Attribute>
<enumValues />

<isOverridden>false</isOverridden>
<name>call_instructions_dtmf</name>

<role>1</role>
<type>0</type>
<value>hp</value>
</Attribute>
<Attribute>
<enumValues />

<isOverridden>false</isOverridden>
<name>call_mute_dtmf</name>

<role>1</role>
<type>0</type>
<value>hp</value>
</Attribute>
<Attribute>
<enumValues />

<isOverridden>false</isOverridden>
<name>call_operator_dtmf</name>

<role>1</role>
<type>0</type>
<value />
</Attribute>
<Attribute>
<enumValues />

96

Web Services API
Programmer’s Guide

<isOverridden>false</isOverridden>
<name>call_participantsnumber_dtmf</name>
<role>1</role>
<type>0</type>
<value>hp</value>

</Attribute>

<Attribute>
<enumValues>on,off</enumValues>
<isOverridden>false</isOverridden>
<name>conference_callerdb</name>
<role>1</role>
<type>0</type>
<value>off</value>

</Attribute>

<Attribute>
<enumValues />
<isOverridden>false</isOverridden>
<name>conference_dialout_dtmf</name>
<role>1</role>
<type>0</type>
<value>h</value>

</Attribute>

<Attribute>
<enumValues />
<isOverridden>false</isOverridden>
<name>conference_entryexittones_dtmf</name>
<role>1</role>
<type>0</type>
<value />

</Attribute>

<Attribute>
<enumValues>on,off</enumValues>
<isOverridden>false</isOverridden>
<name>conference_entrytones</name>
<role>1</role>
<type>0</type>
<value>on</value>

</Attribute>

<Attribute>
<enumValues>on,off</enumValues>
<isOverridden>false</isOverridden>
<name>conference_exittones</name>
<role>1</role>
<type>0</type>
<value>on</value>

</Attribute>

<Attribute>
<enumValues>false,true</enumValues>
<isOverridden>false</isOverridden>
<name>conference_hold_participant</name>
<role>1</role>
<type>0</type>
<value>false</value>

</Attribute>

<Attribute>
<enumValues />
<isOverridden>false</isOverridden>
<name>conference_lock_dtmf</name>
<role>1</role>

97

Web Services API
Programmer’s Guide

<type>0</type>
<value>h</value>

</Attribute>

<Attribute>
<enumValues />
<isOverridden>false</isOverridden>
<name>conference_maxcalls</name>
<role>1</role>
<type>2</type>
<value>-1</value>

</Attribute>

<Attribute>
<enumValues />
<isOverridden>false</isOverridden>
<name>conference_moh</name>
<role>1</role>
<type>0</type>
<value>default</value>

</Attribute>

<Attribute>
<enumValues />
<isOverridden>false</isOverridden>
<name>conference_mute_dtmf</name>
<role>1</role>
<type>0</type>
<value>h</value>

</Attribute>

<Attribute>
<enumValues>open,relaxed,strict</enumValues>
<isOverridden>false</isOverridden>
<name>conference_mute_listener</name>
<role>1</role>
<type>0</type>
<value>strict</value>

</Attribute>

<Attribute>
<enumValues />
<isOverridden>false</isOverridden>
<name>conference_qa_dtmf</name>
<role>1</role>
<type>0</type>
<value>h</value>

</Attribute>

<Attribute>
<enumValues>on,off</enumValues>
<isOverridden>false</isOverridden>
<name>conference_realtime</name>
<role>1</role>
<type>0</type>
<value>off</value>

</Attribute>

<Attribute>
<enumValues>first,moderator</enumValues>
<isOverridden>false</isOverridden>
<name>conference_start_how</name>
<role>1</role>
<type>0</type>
<value>first</value>

</Attribute>

98

Web Services API
Programmer’s Guide

<Attribute>
<enumValues />
<isOverridden>false</isOverridden>
<name>conference_start_wait</name>
<role>1</role>
<type>2</type>
<value>300</value>
</Attribute>
<Attribute>
<enumValues>last,moderator</enumValues>
<isOverridden>false</isOverridden>
<name>conference_stop_how</name>
<role>1</role>
<type>0</type>
<value>last</value>
</Attribute>
<Attribute>
<enumValues />
<isOverridden>false</isOverridden>
<name>conference_stop_wait</name>
<role>1</role>
<type>2</type>
<value>0</value>
</Attribute>
<Attribute>
<enumValues />
<isOverridden>false</isOverridden>
<name>recording_dtmf</name>
<role>1</role>
<type>0</type>
<value>h</value>
</Attribute>
<Attribute>
<enumValues>last,moderator</enumValues>
<isOverridden>false</isOverridden>
<name>recording_stop_how</name>
<role>1</role>
<type>0</type>
<value>last</value>
</Attribute>
<Attribute>
<enumValues />
<isOverridden>false</isOverridden>
<name>recording_stop_wait</name>
<role>1</role>
<type>2</type>
<value>0</value>
</Attribute>
</attributes>
<conferencelnfo>
<description>MMC_JKRAFT</description>
<conferenceNumber>916551</conferenceNumber>
</conferencelnfo>
<confuserld>45</confuserld>
<dnisld>19</dnisld>
<role>1</role>
<subscriberld>26</subscriberld>
</Confuser>
<Confuser>

99

Web Services API
Programmer’s Guide

<accessCode>637387 </accessCode>
<attributes />
<conferencelnfo>
<description>MMC_JKRAFT </description>
<conferenceNumber>916551</conferenceNumber>
</conferencelnfo>
<confuserld>44</confuserld>
<dnisld>19</dnisld>
<role>2</role>
<subscriberld>26</subscriberld>
</Confuser>
<Confuser>
<accessCode>451665</accessCode>
<attributes />
<conferencelnfo>
<description>MMC_JKRAFT</description>
<conferenceNumber>916551</conferenceNumber>
</conferencelnfo>
<confuserld>46</confuserld>
<dnisld>19</dnisId>
<role>3</role>
<subscriberIld>26</subscriberld>
</Confuser>
</confusers>
<country xmIns="http://data.dnca.datanaut.com">US</country>
<created xmIns="http://data.dnca.datanaut.com">
2009-10-12T00:00:00-07:00</created>
<details xmIns="http://data.dnca.datanaut.com" xsi:nil="true" />
<email xmins="http://data.dnca.datanaut.com">
jkraft@phone-mobile.com</email>
<firstName xmlns="http://data.dnca.datanaut.com">Julie</firstName>
<lastName xmlIns="http://data.dnca.datanaut.com">Kraft</lastName>
<parentld xmIns="http://data.dnca.datanaut.com">1</parentld>
<password xmIns="http://data.dnca.datanaut.com">321</password>
<phoneNumber xmIns="http://data.dnca.datanaut.com">
(204) 221-7600</phoneNumber>
<pin xmIns="http://data.dnca.datanaut.com">jkraft</pin>
<role xmIins="http://data.dnca.datanaut.com">3</role>
<subscriberld xmIns="http://data.dnca.datanaut.com">26</subscriberId>
<zip xmins="http://data.dnca.datanaut.com" xsi:nil="true" />

</nsl:out>
</nsl:createSubscriberResponse>
</soap:Body>

</soap:Envelope>

100

Web Services API
Programmer’s Guide

Subscribers Management

Sample of Subscriber and his Conference Accounts Creation
(Sample_ManageSubscriberl)

/*

Sample of Subscriber and his Conference Accounts Creation
Let’s review the following scenario:

*/

we

need to create the subscriber;

when we create the subscriber we need to create three conference accounts

(c
an

onference users) - the first for moderator, the second for participant,
d the third for listener.

public void Sample ManageSubscriberl ()

{

// Declare constants

cons
cons
cons
cons

t int MODE HOST = 1; // Moderator

t int MODE_PARTICIPANT = 2;

t int MODE LISTENER = 3;

t String DNIS = "12"; // We use this DNIS number for sample purposes,
// please use your DNIS number here

// Declare variables

Subs
Subs
Conf
Conf
Conf
DNIS

criber newSubscriber;
criber createdSubscriber;
user moderatorConfuser;
user participantConfuser;
user listenerConfuser;

[] dnises;

long dnisId;

String generatedAccessCode;
try
{
mLastError = "";
// Create new instance of Subscriber object (to populate new subscriber fields)
newSubscriber = new Subscriber();
// Define all mandatory fields and some optional fields
newSubscriber.pin = "jkraft";
newSubscriber.password = "321";
newSubscriber.city = "New-York";
newSubscriber.country = "US";
newSubscriber.email = "jkraft@phone-mobile.com";
newSubscriber.firstName = "Julie";
newSubscriber.lastName = "Kraft";
newSubscriber.phoneNumber = " (204) 221-7600";
// For instance, we do not want to define additional optional properties,
// such as newOperatorSubscriber.addressl, newOperatorSubscriber.address2, etc.
// Find DNIS 12 (SPECTEL)
// Note. In this sample we create sample for DNIS 12 (SPECTEL),
// you can use your DNIS to create your conference accounts
dnises = ws.getDNISes (0, 0, "did=" + DNIS, null);
// XML that was sent to the server see here:
// Sample ManageSubscriberl.getDNISes.12 sent.xml
// XML that was received from the server see here:
// Sample ManageSubscriberl.getDNISes.12 received.xml
if (dnises != null && dnises.Length > 0)

// Create conference users only if the requested DNIS was found
dnisId = dnises[0].dnisId; // The ID of DNIS

// Create new instance and populate Confuser object for the moderator role
generatedAccessCode = ws.generateAccessCode () ; // Generate access code
// XML that was sent to the server see here:

// Sample ManageSubscriberl.generateAccessCode.sent.xml

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.getDNISes.12_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.getDNISes.12_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.getDNISes.12_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.getDNISes.12_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.generateAccessCode.sent.xml

101

//
//

*/

Web Services API
Programmer’s Guide

XML that was received from the server see here:
Sample ManageSubscriberl.generateAccessCode.received.xml

Programmers notes.

When we create new conference users (either using createConfuser or
createSubscriber methods) if conferenceInfo.conferenceNumber == 0 and
conferenceInfo.description != null, the new ConfInfo object will be created,
new unique 6-digits conference number will be

assigned to this ConfInfo object. The created object can be used in new
conference users creation.

If when we create the subscriber only one confuser has not null
conferenceInfo, one new conference number (conference info) will be created
and all other conference users (where conferenceInfo is null) will be created
and assigned to this conference info.

In the sample below we define conferenceInfo for the moderator confuser only;
because we do not define conferenceInfo for the participant and the listener
confuser they will be assigned to the same conference number (conferencelInfo)
that will be created for the moderator.

moderatorConfuser = new Confuser();
moderatorConfuser.accessCode = generatedAccessCode;
moderatorConfuser.dnisId = dnisId;
moderatorConfuser.conferenceInfo = new ConfInfo();
moderatorConfuser.conferenceInfo.description = "MMC JKRAFT";
moderatorConfuser.dnisIdSpecified = true;
moderatorConfuser.role = MODE HOST;
moderatorConfuser.roleSpecified = true;

/*

*

*/

//

Programmers notes.

If you are coding on C# or VB.Net in some cases client web services proxy

code can generate additional parameter <property>Specified (Boolean type).
This behavior is by design. The issue is with value types that are marked in
the WSDL as not being required. Since they are value types, they can't

return. The solution that Microsoft implemented was to add a separate Boolean
field or property you can set to say whether or not you are supplying the
value.

This means that when your .NET application wants to call web service, it needs
to set the <property>Specified property. This property is not included into XML
that will be sent to server, but it is used to generate this XML.
dnisIdSpecified, roleSpecified - are samples of such properties.

Create new instance and populate Confuser object for the participant role

generatedAccessCode = ws.generateAccessCode();

participantConfuser = new Confuser();

par
par

ticipantConfuser.accessCode = generatedAccessCode;
ticipantConfuser.dnisId = dnisId;

participantConfuser.dnisIdSpecified = true;
participantConfuser.role = MODE PARTICIPANT;

par

//

gen

lis
lis
lis
1lis
1lis
lis

//
//
new
new
new
new

ticipantConfuser.roleSpecified = true;

Create new instance and populate Confuser object for the listener role

eratedAccessCode = ws.generateAccessCode() ;
tenerConfuser = new Confuser();
tenerConfuser.accessCode = generatedAccessCode;

tenerConfuser.dnisId = dnisId;
tenerConfuser.dnisIdSpecified = true;
tenerConfuser.role = MODE LISTENER;
tenerConfuser.roleSpecified = true;

Add moderator and participant conference users to new subscribers
that should be created

Subscriber.confusers = new Confuser[3];
Subscriber.confusers.SetValue (moderatorConfuser, 0);
Subscriber.confusers.SetValue (participantConfuser, 1);
Subscriber.confusers.SetValue (listenerConfuser, 2);

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.generateAccessCode.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.generateAccessCode.received.xml

102 Web Services API
Programmer’s Guide

// Call web service method createSubscriber (to create new subscriber)
// and his conference accounts

createdSubscriber = ws.createSubscriber (newSubscriber) ;

// XML that was sent to the server see here:

// Sample ManageSubscriberl.createSubscriber.sent.xml

// XML that was received from the server see here:

// Sample ManageSubscriberl.createSubscriber.received.xml

// Screenshot of new created subscriber see here:

// Sample ManageSubscriberl.createSubscriber.jpg

return;
}
catch (Exception ex)
{
mLastError = "Error in " + this.GetType () .FullName +
".Sample ManageSubscriberl: " + ex.Message;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.createSubscriber.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.createSubscriber.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.createSubscriber.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.createSubscriber.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.createSubscriber.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber1/Sample_ManageSubscriber1.createSubscriber.jpg

103 Web Services API
Programmer’s Guide

Sample of Subscribers Filtering, Modifications, Conference Accounts

Modifications (Sample ManageSubscriber2)

/*
Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications
Let’s review the following scenario:

. we need to find the subscriber that was created in the previous sample using his pin;

. for the selected subscriber we need to modify his password and email;

. for the selected subscriber we need to remove his conference accounts (conference users)
with the listener role;

. for the selected subscriber we need to define some custom attributes as well as change

access code for his conference accounts with host role.

*/
public void Sample ManageSubscriber2 ()
{

// Declare constants

const int MODE HOST = 1; // Moderator

const int MODE PARTICIPANT = 2;

const int MODE LISTENER = 3;

// Declare variables

Subscriber[] listSubscribers;

Subscriber userSubscriber;

Confuser currentConfuser;

Confuser[] moderatorConfusers;

ConfInfo currentConfInfo = null;

int confusersCount;

String generatedAccessCode;

try
{

mLastError = "";

// Find jkraft subscriber (created in previous sample)
listSubscribers = ws.getSubscribers (0, 0, "pin='jkraft'", "");
// XML that was sent to the server see here:

// Sample ManageSubscriber2.getSubscribers.pin sent.xml

// XML that was received from the server see here:

// Sample ManageSubscriber2.getSubscribers.pin received.xml

List<Subscriber> getSubscribers (long offset,
long limit,
String filter,
String order)
throws ServerException,
AccessDeniedException

* This function returns list of Subscribers that match filter.
* Offset and limit allow to implement paging on the web server.
* Please note that field confusers in Subscriber will not be populated to avoid huge
* amount of data to be transferred in case if big request is processed.
* Parameters:
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sqgl
conditional statement started with one or more Subscriber field names.
Acceptable operators: <= , >= , !=, <, >, like , ilike, and

4
For example login='12"' or login 1ike'%2%' or subscriberId >= 15.
Empty string or null means no filter.
order - A string specifying Subscriber field name and sort direction.
For example "login" or "email desc". The default direction
is asc and can be omitted. Empty string or null means no order.
* Acceptable fields:
esubscriberId
eparentId
epin
*password
efirstName
*lastName
eemail

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscribers.pin_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscribers.pin_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscribers.pin_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscribers.pin_received.xml

104 Web Services API
Programmer’s Guide

caddressl
ecity
ecountry
ephoneNumber
* Returns:
list of Subscriber objects
*/
if (listSubscribers != null && listSubscribers.Length > 0)
{
/*
* Programmers notes.
Because getSubscribers method returns only the list of subscribers with their basic
attributes and does not return conferencelInfo attributes property, we need to call
getSubscriber method for the subscriber that was found to get his complete set of
attributes
*/
userSubscriber = ws.getSubscriber (listSubscribers[0].subscriberId);
// XML that was sent to the server see here:
// Sample ManageSubscriber2.getSubscriber.sent.xml
// XML that was received from the server see here:
// Sample ManageSubscriber2.getSubscriber.received.xml

userSubscriber.password = "654321";
userSubscriber.email = "jkraft@manage.com";

if (userSubscriber.confusers != null)

{
confusersCount = 0;
for (int idx = 0; idx < userSubscriber.confusers.Length; idx++)
{

currentConfuser = userSubscriber.confusers[idx];

if (currentConfuser.role == MODE HOST)
{
generatedAccessCode = ws.generateAccessCode () ; // Generate new access code
currentConfuser.accessCode = generatedAccessCode;
currentConfInfo = currentConfuser.conferencelnfo;
confusersCount++;
}
else if (currentConfuser.role == MODE PARTICIPANT)
{
confusersCount++;
}
else if (currentConfuser.role == MODE LISTENER)
{
userSubscriber.confusers[idx] = null;
}
}
moderatorConfusers = new Confuser[confusersCount];
confusersCount = 0;

for (int idx = 0; idx < userSubscriber.confusers.Length; idx++)
{
if (userSubscriber.confusers[idx] != null)
{
moderatorConfusers.SetValue (userSubscriber.confusers[idx], confusersCount);
confusersCount++;
}
}

userSubscriber.confusers = moderatorConfusers;

// Call web service method updateSubscriber (to modify existing subscriber)
ws.updateSubscriber (userSubscriber) ;

// XML that was sent to the server see here:

// Sample ManageSubscriber2.updateSubscriber.sent.xml

// XML that was received from the server see here:

// Sample ManageSubscriber2.updateSubscriber.received.xml

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscriber.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscriber.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscriber.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.getSubscriber.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber.received.xml

105 Web Services API
Programmer’s Guide

// Define custom attributes for subscriber's conference info
if (currentConfInfo != null)
{
foreach (jAdmin.Attribute attr in currentConfInfo.attributes)
{
if (attr.name == "conference entrytones")
{
attr.value = "off";
attr.isOverridden = true;
attr.isOverriddenSpecified = true;

}

if (attr.name == "conference exittones")
{

attr.value = "off";

attr.isOverridden = true;

attr.isOverriddenSpecified = true;
}
if (attr.name == "conference start wait")
{
attr.value = "500";
attr.isOverridden = true;
attr.isOverriddenSpecified = true;

// Call web service method updateSubscriber (to modify existing subscriber)
ws.updateConferenceInfo (currentConfInfo) ;

// XML that was sent to the server see here:

// Sample ManageSubscriber2.updateConferencelInfo.sent.xml

// XML that was received from the server see here:

// Sample ManageSubscriber2.updateConferenceInfo.received.xml

// Screenshot of updated subscriber see here:

// Sample ManageSubscriber2.updateSubscriber.jpg

// Screenshot of updated subscriber’s conference account see here:
// Sample ManageSubscriber2.updateSubscriber confuser.jpg

return;
}
catch (Exception ex)
{
mLastError = "Error in " + this.GetType () .FullName +
".Sample ManageSubscriber2: " + ex.Message;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateConferenceInfo.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateConferenceInfo.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateConferenceInfo.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateConferenceInfo.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber_confuser.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber2/Sample_ManageSubscriber2.updateSubscriber_confuser.jpg

106 Web Services API
Programmer’s Guide

Sample of Subscribers Filtering and Deletion (Sample ManageSubscriber3)

/*
Sample of Subscribers Filtering and Deletion
Let’s review the following scenario:
. we need to find out all subscribers who have emails from domain “manage.com”;
. for each of these subscribers if the subscriber does not have phone number
we need to delete him.
*/
public void Sample ManageSubscriber3()
{
// Declare variables
Subscriber[] listSubscribers;

try
{

mLastError = "";

// Find all subscribers who have emails from domain “manage.com”
listSubscribers = ws.getSubscribers (0, 0, "email like'%@manage.com%'", "");
// XML that was sent to the server see here:

// Sample ManageSubscriber3.getSubscribers.email sent.xml

// XML that was received from the server see here:

// Sample ManageSubscriber3.getSubscribers.email received.xml

// See screenshot of the subscribers filtered by email

// that were on the bridge prior to the program start:

// Sample ManageSubscriber3.subscribers before.jpg

if (listSubscribers != null)

foreach (Subscriber s in listSubscribers)
{
if (String.IsNullOrEmpty (s.phoneNumber))
{
// Delete the subscriber
ws.deleteSubscriber (s.subscriberId) ;
// XML that was sent to the server see here:
// Sample ManageSubscriber3.deleteSubscriber.sent.xml
// XML that was received from the server see here:
// Sample ManageSubscriber3.deleteSubscriber.received.xml

}
}
// See screenshot of the subscribers filtered by email
// that were on the bridge after the program is finished:
// Sample ManageSubscriber3.subscribers after.jpg

return;
}
catch (Exception ex)

{
mLastError = "Error in " + this.GetType () .FullName +
".Sample ManageSubscriber3: " + ex.Message;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.getSubscribers.email_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.getSubscribers.email_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.getSubscribers.email_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.getSubscribers.email_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.subscribers_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.subscribers_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.deleteSubscriber.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.deleteSubscriber.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.deleteSubscriber.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.deleteSubscriber.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.subscribers_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageSubscriber3/Sample_ManageSubscriber3.subscribers_after.jpg

107

Web Services API
Programmer’s Guide

Sample of Getting Conference Users Information (Sample ManageConfuser1)

/*
Sample of Getting Conference Users Information
Let’s review the following scenario:

. we need to count conference users (accounts) with for SPECTEL call flow;

. we need to get all conference users (accounts) with for SPECTEL call flow
with host role;

o we need to output subscriber ID, conference number, access code for them.

*/

public String Sample ManageConfuserl ()

{
// Declare constants
const int MODE_HOST =
// Declare variables
long lngConfusersCount;
CallFlow[] callFlows;
DNIS[] dnises;
Confuser[] confusers;
String dnisIDs = ",";
String strInfo;

1; // Moderator

try

{
mLastError =
strInfo = "";

we o,
’

// Get requested call flow by name

callFlows = ws.getCallFlows (0, 0, "name='SPECTEL'",
XML that was sent to the server see here:

Sample ManageConfuserl.getCallFlows.sent.xml

XML that was received from the server see here:
Sample ManageConfuserl.getCallFlows.received.xml

nny

List<CallFlow> getCallFlows (long offset,
long limit,
java.lang.String filter,
java.lang.String order)
throws ServerException,

AccessDeniedException

* This function returns list of CallFlows which match the filter provided.
* There are two parameters offset and limit to help to implement paging on the web
* application. All users can get all CallFlows registered on the bridge. Later there
* will be introduced a restriction so users are able to see only those CallFlows which
* are assigned to them.
* Parameters:
offset - zero based offset in recordset.

limit - maximum number of objects to return.
filter - The criteria to use to filter the rows.
conditional statement started with one or more CallFlow field names.
Acceptable operators: <= , >= , != , =, <, >, like , ilike, and
For example name='12' or name like'$2%' or collFlowId >= 15.
Empty string or null means no filter.
order - A string specifying CallFlow field name and sort direction.
For example "name" or "name desc".
Empty string or null means no order.
* Accepted fields:
ecallFlowId
*name
*path
* Returns:
list of CallFlow objects
*/
if
{

(callFlows != null && callFlows.Length > 0)

// Get DNISes for the selected call flow
dnises = ws.getDNISes (0, 0, "callFlowId=" + callFlows[0].callFlowId.ToString(),
// XML that was sent to the server see here:

The criteria should be a simple sgl

The default direction is asc and can be omitted.

nny

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getCallFlows.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getCallFlows.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getCallFlows.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getCallFlows.received.xml

108

Web Services API
Programmer’s Guide

// Sample ManageConfuserl.getDNISes.sent.xml
// XML that was received from the server see here:
// Sample ManageConfuserl.getDNISes.received.xml
) *
List<DNIS> getDNISes (long offset,
long limit,
java.lang.String filter,
java.lang.String order)
throws ServerException,
AccessDeniedException
This function returns list of DNISes (phone numbers) which match the filter
provided. There are two parameters offset and limit to help to implement paging on
the web application. All users can get all numbers registered on the bridge.
Parameters:
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple
sgql conditional statement started with one or more DNIS field names.
Acceptable operators: <= , >= , =, =, <, >, like , ilike, and
For example name='12' or name like'$%2%' or collFlowId >= 15.
Empty string or null means no filter.
order - A string specifying DNIS field name and sort direction.
For example "name" or "name desc".
The default direction is asc and can be omitted.
Empty string or null means no order.
* Accepted fields:
ecallFlowId
ednisId
edid
edescription
* Returns:
list of DNIS objects
*/
if (dnises != null && dnises.Length > 0)
{
foreach (DNIS d in dnises)
{

* ok ok ok

if (dnisIDs.IndexOf("," + d.dnisId.ToString() + ",") < 0)
{
dnisIDs += d.dnisId.ToString() + ",";

if (dnisIDs.Length <= 2)
{
dnisIDs = "";
}
else
{
if (Utils.LeftString(dnisIDs, 1) == ",")
dnisIDs = dnisIDs.Substring(l);
if (Utils.RightString(dnisIDs, 1) == ",")
dnisIDs = Utils.LeftString(dnisIDs, dnisIDs.Length - 1);

if (!String.IsNullOrEmpty (dnisIDs))
{
// Count how many conference users exist on the bridge for the call flow SPECTEL
IngConfusersCount = ws.getConfusersCount ("dnisId in (" + dnisIDs + ")");
// XML that was sent to the server see here:
// Sample ManageConfuserl.getConfusersCount.sent.xml
// XML that was received from the server see here:
// Sample ManageConfuserl.getConfusersCount.received.xml
strInfo += "Number of SPECTEL conference users: " + lngConfusersCount.ToString/()
+ ". \n\zr";

// Get conference users for the selected call flow

confusers = ws.getConfusers (0, 0, "dnisId in (" + dnisIDs + ") and role ="
+ MODE_HOST.ToString(), "subscriberId asc");

// XML that was sent to the server see here:

// Sample ManageConfuserl.getConfusers.sent.xml

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getDNISes.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getDNISes.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getDNISes.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getDNISes.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusersCount.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusersCount.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusersCount.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusersCount.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusers.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusers.sent.xml

109 Web Services API
Programmer’s Guide

// XML that was received from the server see here:
// Sample ManageConfuserl.getConfusers.received.xml
/*
List<Confuser> getConfusers (long offset,
long limit,
java.lang.String filter,
java.lang.String order)
throws ServerException,
AccessDeniedException

* This function returns the list of Confuser which match the given filter.
* There are rare cases when this function needs to be called directly as
* getSubscriber returns list of subordinate conference users.
* Parameters:
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a

simple sgl conditional statement started with one or more Confuser
field names.
Acceptable operators: <= , >= , =, =, <, >, like , ilike, and
For example login='1l2' or login like'$%2%' or subscriberId >= 15.
Empty string or null means no filter.
order - A string specifying Confuser field name and sort direction.
For example "name" or "name desc".
The default direction is asc and can be omitted.
Empty string or null means no order.
* Accepted fields:
esubscriberId
econfuserId
erole
ednisId
caccessCode
econferenceNumber
* Returns:
list of DNIS objects
*/
if (confusers != null && confusers.Length > 0)
{
strInfo += "Number of SPECTEL conference users with host role: "
+ confusers.Length.ToString() + ". \n\zr";
strInfo += "subscr.\tconf #\taccess code \n\r";
foreach (Confuser cu in confusers)
{
strInfo += cu.subscriberId.ToString() + "\t"
+ cu.conferencelInfo.conferenceNumber.ToString () + "\t"
+ cu.accessCode + "\n\r";

}

else

{

strInfo += "No SPECTEL conference users with host role found. \n\r";

}

// Sample of program output: Sample ManageConfuserl.return.jpg
// ** Number of SPECTEL conference users: 4.
// ** Number of SPECTEL conference users with host role: 2.

// ** subscr. conf # access code
/] ** 3 758288 961091
/] ** 4 214423 870888

return strInfo;
}
catch (Exception ex)
{
mLastError = "Error in " + this.GetType () .FullName +
".Sample ManageConfuserl: " + ex.Message;
return mLastError;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusers.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.getConfusers.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConfuser1/Sample_ManageConfuser1.return.jpg

110 Web Services API
Programmer’s Guide

Conferences and Calls Management

Sample of Conferences Filtering, Changes Secure Mode, Dropping the

Conferences (Sample ManageConferencel)
/ *

Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences
Let’s review the following scenario:

. we need to count how many conferences are currently on the bridge;

. for the selected subscriber we need to drop all conferences if the participants count
less than two;

. for unsecured conferences for the selected subscriber with two participants we need to

make them secure.
*/
public String Sample ManageConferencel ()
{
// Declare variables
long lngConferencesCount;
Conference[] singleParticipantConferences;
Conference[] twoParticipantsUnsecuredConferences;
String filterSubscriber;
String strStatus;

try

{
mLastError =
strStatus = "";

(LTI
’

// See screenshot of the conferences that were started on the bridge prior
// to the program start: conferences before.jpg

// Count started conferences

// We use empty filter parameter to output all conferences

lngConferencesCount = ws.getConferencesCount ("");

// XML that was sent to the server see here:

// Sample ManageConferencel.getConferencesCount.all sent.xml

// XML that was received from the server see here:

// Sample ManageConferencel.getConferencesCount.all received.xml

strStatus += "Number of started conferences: " + lngConferencesCount.ToString/()
+ ". \n\zr";

// Find all subscriber's conferences with the participants count less than two
filterSubscriber = GetConferenceNumbersBySubscriberPIN ("admin") ;
// Click here to see GetConferenceNumbersBySubscriberPIN function implementation
if (!String.IsNullOrEmpty (filterSubscriber))

filterSubscriber = "conferenceNumber in (" + filterSubscriber + ") and ";
singleParticipantConferences = ws.getConferences (0, O,

filterSubscriber + "participantCnt<2", "");

// XML that was sent to the server see here:
// Sample ManageConferencel.getConferences.single sent.xml
// XML that was received from the server see here:
// Sample ManageConferencel.getConferences.single received.xml

List<Conference> getConferences (long offset,
long limit,
java.lang.String filter,
java.lang.String order)
throws ServerException,
AccessDeniedException

* This function returns list of Conferences which are registered for the subscriber
* on which behalf this call is executed.
* For administrator it returns list of all registered Conferences.
* Parameters:
offset - zero based offset in recordset.

limit - maximum number of objects to return.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/conferences_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/conferences_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferencesCount.all_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferencesCount.all_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferencesCount.all_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferencesCount.all_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.single_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.single_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.single_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.single_received.xml

111 Web Services API
Programmer’s Guide

filter - The criteria to use to filter the rows.
The criteria should be a simple sgl conditional statement started with one or
more Conference field names.
Acceptable operators: <= , >= , =, =, <, >, like , ilike, and
For example conferenceNumber='12' or conferenceNumber like'$%$2%' or duration >= 15.
order - A string specifying Conference field name and sort direction.
For example "conferenceNumber" or "created desc".
The default direction is asc and can be omitted.
Empty string or null means no order.
* Accepted fields:
econferenceld
econferenceNumber
ecreated ('yyyy.MM.dd/hh:mm' format)
eduration
eparticipantCnt
eisSecured
emuteMode
* Empty string or null means no filter.
* Returns:
list of Conference objects
*/
if (singleParticipantConferences != null && singleParticipantConferences.Length > 0)
{
foreach (Conference ¢ in singleParticipantConferences)
{
ws.hangupConference (c.conferenceld) ;
// XML that was sent to the server see here:
// Sample ManageConferencel.hangupConference.sent.xml
// XML that was received from the server see here:
// Sample ManageConferencel.hangupConference.received.xml
}
strStatus += "Number of dropped single participant conferences:
+ singleParticipantConferences.Length.ToString() + ". \n\r";

}
else
{
strStatus += "No single participant conferences found. \n\r";

}

// Find subscriber's unsecured conferences with two participants
twoParticipantsUnsecuredConferences = ws.getConferences (0, 0,
filterSubscriber + "isSecured=0 and participantCnt=2", "");
// XML that was sent to the server see here:
// Sample ManageConferencel.getConferences.two sent.xml
// XML that was received from the server see here:
// Sample ManageConferencel.getConferences.two received.xml
if (twoParticipantsUnsecuredConferences != null &&
twoParticipantsUnsecuredConferences.Length > 0)

foreach (Conference ¢ in twoParticipantsUnsecuredConferences)
{
ws.secureConference (c.conferenceld) ;
// XML that was sent to the server see here:
// Sample ManageConferencel.secureConference.sent.xml
// XML that was received from the server see here:
// Sample ManageConferencel.secureConference.received.xml
}
strStatus += "Number of two participants conferences made secured:
+ twoParticipantsUnsecuredConferences.Length.ToString() + ". \n\r";

}

else

{

strStatus += "No unsecured conferences with two participants found. \n\r";

}

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.hangupConference.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.hangupConference.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.hangupConference.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.hangupConference.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.two_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.two_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.two_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.getConferences.two_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.secureConference.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.secureConference.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.secureConference.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.secureConference.received.xml

112 Web Services API
Programmer’s Guide

// See screenshot of the conferences that were on the bridge after the program
// is finished: conferences after.jpg

// In this case the program returns the following message:

// Sample ManageConferencel.return.jpg

// ** Number of started conferences: 2.

// ** Number of dropped single participant conferences: 1.

// ** Number of two participants conferences made secured: 1.

return strStatus;
}
catch (Exception ex)
{
mLastError = "Error in " + this.GetType () .FullName +
".Sample ManageConferencel: " + ex.Message;
return mLastError;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/conferences_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/conferences_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference1/Sample_ManageConference1.return.jpg

113 Web Services API
Programmer’s Guide

Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A

Sessions and Conference Recording (Sample_ManageConference2)

/ *

Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A Sessions and
Conference Recording

Let’s review the following scenario:

. we need to place the specific conference (the conference with specific conference
number) on hold;

. we need to wait 1 minute and take this conference off hold;

. after that we need to start conference recording and start Q&A session for this
conference;

. we need to wait 1 minute, we assume that conference participants requested to ask
questions during this minute;

. we need to let the first participant ask his question (i.e. un-mute him - engage his
Q&A session);

. we need to wait 1 minute and then complete the first participant question, i.e.
disengage his Q&A session;

. we need to stop Q&A session and stop conference recording for this conference.

*/

public void Sample ManageConference2 ()
{

// Declare constants

const int QA MODE OPEN = 0; // Stop Q&A mode for the conference

const int QA MODE CLOSED = 2; // Start Q&A mode for the conference

const long CONFERENCE NUMBER = 667788; // Default conference number for this sample
// Declare variables

Conference[] conferences;

Session[] sessions;

long conferencelId;
long sessionId;

try
{

mLastError = "";

// See screenshot of the conferences that were started on the bridge prior

// to the program start: conferences before.jpg

// See screenshot of the selected conference calls that were started on the bridge prior
// to the program start: calls before.jpg

// Find the conference with the the conference number 667788
conferences = ws.getConferences (0, 0, "conferenceNumber="
+ CONFERENCE NUMBER.ToString(), "");
// XML that was sent to the server see here:
// Sample ManageConference?2.getConferences.conferenceNumber sent.xml
// XML that was received from the server see here:
// Sample ManageConference2.getConferences.conferenceNumber received.xml

if (conferences != null && conferences.Length > 0)
conferencelId = conferences[0].conferenceld;

// Place the conference on hold

ws.holdConference (conferenceld) ;

// XML that was sent to the server see here:

// Sample ManageConference2.holdConference.sent.xml

// XML that was received from the server see here:

// Sample ManageConference2.holdConference.received.xml

// Wait 1 minute (60,000 milliseconds)
System.Threading.Thread.Sleep (60000) ;

// The conference is on hold.

// See screenshot of the conferences that were on the bridge at this

// moment: conferences pausel.jpg

// See screenshot of the selected conference calls that were on the bridge at this
// moment: calls pausel.jpg

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getConferences.conferenceNumber_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getConferences.conferenceNumber_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getConferences.conferenceNumber_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getConferences.conferenceNumber_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.holdConference.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.holdConference.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.holdConference.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.holdConference.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_pause1.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_pause1.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_pause1.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_pause1.jpg

114

Web Services API
Programmer’s Guide

// Take the conference off hold

ws.unHoldConference (conferencelId) ;

// XML that was sent to the server see here:

// Sample ManageConference2.unHoldConference.sent.xml

// XML that was received from the server see here:

// Sample ManageConference2.unHoldConference.received.xml

// Start the conference recording

ws.startConferenceRecording (conferencelId, "", "");

// XML that was sent to the server see here:

// Sample ManageConference2.startConferenceRecording.sent.xml

// XML that was received from the server see here:

// Sample ManageConference?2.startConferenceRecording.received.xml

// Start Q&A session for the conference

//ws.muteConference (conferenceId, MUTE MODE QUESTION) ; // version 1.4
ws.gaSetMode (conferenceId, QA MODE CLOSED) ; // version 2.x
// XML that was sent to the server see here:

// Sample ManageConference2.gaSetMode.closed sent.xml

// XML that was received from the server see here:

// Sample ManageConference2.gaSetMode.closed received.xml

// Wait 1 minute (60,000 milliseconds)
System.Threading.Thread.Sleep (60000) ;

sessions = ws.getSessions (0, 0, "role=2 and conferenceld=" + conferenceld.ToString(),

// XML that was sent to the server see here:

// Sample ManageConference?2.getSessions.conferenceld sent.xml

// XML that was received from the server see here:

// Sample ManageConference2.getSessions.conferenceld received.xml

if (sessions != null && sessions.Length > 0)

{

sessionId = sessions[0].sessionId;

// Engage Q&A session for the first conference participant
ws.gaEngage (sessionId) ;

// XML that was sent to the server see here:

// Sample ManageConference2.gaEngage.sent.xml

// XML that was received from the server see here:

// Sample ManageConference?2.gaEngage.received.xml

sessionId = 0;

}

// Wait 1 minute (60,000 milliseconds)
System.Threading.Thread.Sleep (60000) ;

// The conference recording is started, the Q&A session is started,
// the first participant is asking a question.

// See screenshot of the conferences that were on the bridge at this
// moment: conferences pause2.jpg

ny

// See screenshot of the selected conference calls that were on the bridge at this

// moment: calls pause2.]jpg

if (sessionId > 0)

// Disengage Q&A session for the first conference participant
ws.gaDisengage (sessionId) ;

// XML that was sent to the server see here:

// Sample ManageConference2.gaDisengage.sent.xml

// XML that was received from the server see here:

// Sample ManageConference2.gaDisengage.received.xml

// See screenshot of the selected conference calls that were on the bridge at this

// moment: calls point3.jpg

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.unHoldConference.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.unHoldConference.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.unHoldConference.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.unHoldConference.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.startConferenceRecording.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.startConferenceRecording.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.startConferenceRecording.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.startConferenceRecording.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.closed_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.closed_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.closed_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.closed_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getSessions.conferenceId_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getSessions.conferenceId_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getSessions.conferenceId_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.getSessions.conferenceId_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaEngage.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaEngage.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaEngage.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaEngage.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_pause2.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_pause2.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_pause2.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_pause2.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaDisengage.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaDisengage.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaDisengage.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaDisengage.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_point3.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_point3.jpg

115 Web Services API
Programmer’s Guide

// Stop Q&A session for the conference

//ws.muteConference (conferenceId, MUTE MODE OPEN) ; // version 1.4
ws.gaSetMode (conferenceId, QA MODE OPEN) ; // version 2.x

// XML that was sent to the server see here:

// Sample ManageConference2.gaSetMode.open sent.xml

// XML that was received from the server see here:

// Sample ManageConference2.gaSetMode.open received.xml

// See screenshot of the selected conference calls that were on the bridge at this
// moment: calls pointd.jpg

// Stop the conference recording

ws.stopConferenceRecording (conferenceld) ;

// XML that was sent to the server see here:

// Sample ManageConference?2.stopConferenceRecording.sent.xml

// XML that was received from the server see here:

// Sample ManageConference2.stopConferenceRecording.received.xml

// See screenshot of the conferences that were on the bridge after

// the program is finished: conferences after.]jpg

// See screenshot of the selected conference calls that were on the bridge after
// the program is finished: calls after.jpg

return;
}
catch (Exception ex)
{
mLastError = "Error in " + this.GetType () .FullName +
".Sample ManageConference2: " + ex.Message;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.open_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.open_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.open_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.qaSetMode.open_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_point4.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_point4.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.stopConferenceRecording.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.stopConferenceRecording.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.stopConferenceRecording.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/Sample_ManageConference2.stopConferenceRecording.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/conferences_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference2/calls_after.jpg

116 Web Services API
Programmer’s Guide

Sample of Conference Polling Sessions (Sample_ManageConference3)

/*
Sample of Conference Polling Sessions
Let’s review the following scenario:

. we need to start the polling session for the specific conference (the conference
with specific conference number) with available polling options 1, 2, 3;

. we need to wait 1 minute, we assume that conference participants will vote
(select one of the available options) during this minute;

. we need to stop the polling session for this conference;

. after that we need to output polling results.

*/

public String Sample ManageConference3 ()

{

// Declare constants

const long CONFERENCE NUMBER = 651077; // Default conference number for this sample
const String POLLING OPTIONS = "123"; // Available polling options

// Declare variables

Conference[] conferences;

PollingResult[] pollingResults;
long conferenceld;
String strStatus;

try

{
mLastError = "";
strStatus = "";

conferences = ws.getConferences (0, 0, "conferenceNumber="
+ CONFERENCE NUMBER.ToString(), "");
// XML that was sent to the server see here:
// Sample ManageConference3.getConferences.conferenceNumber sent.xml
// XML that was received from the server see here:
// Sample ManageConference3.getConferences.conferenceNumber received.xml
if (conferences != null && conferences.Length > 0)

conferenceId = conferences[0].conferenceld;

// Conference calls before the polling session has been started:
// Sample ManageConference3.conference before.jpg
ws.startPolling(conferenceId, POLLING OPTIONS);

// XML that was sent to the server see here:

// Sample ManageConference3.startPolling.sent.xml

// XML that was received from the server see here:

// Sample ManageConference3.startPolling.received.xml

// Conference calls after the polling session has been started:
// Sample ManageConference3.conference after.jpg

// Wait 1 minute (60,000 milliseconds)
System.Threading.Thread.Sleep (60000) ;

ws.stopPolling (conferenceld) ;

// XML that was sent to the server see here:

// Sample ManageConference3.stopPolling.sent.xml

// XML that was received from the server see here:
// Sample ManageConference3.stopPolling.received.xml

pollingResults = ws.getPollingResults (conferenceld);

// XML that was sent to the server see here:

// Sample ManageConference3.getPollingResults.sent.xml

// XML that was received from the server see here:

// Sample ManageConference3.getPollingResults.received.xml

if (pollingResults != null && pollingResults.Length > 0)
{
strStatus += "Polling results for the conference " + CONFERENCE NUMBER.ToString()
+ ll‘ \n\rll;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getConferences.conferenceNumber_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getConferences.conferenceNumber_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getConferences.conferenceNumber_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getConferences.conferenceNumber_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.conference_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.conference_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.startPolling.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.startPolling.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.startPolling.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.startPolling.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.conference_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.conference_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.stopPolling.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.stopPolling.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.stopPolling.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.stopPolling.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getPollingResults.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getPollingResults.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getPollingResults.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.getPollingResults.received.xml

117 Web Services API
Programmer’s Guide

foreach (PollingResult pr in pollingResults)
{
strStatus += pr.created.ToShortDateString() + " "
+ pr.created.ToShortTimeString () + "\n\r";
foreach (anyTypeZanyTypeMapEntry s in pr.votes)
{
strStatus += "key: " + s.key + " / value: " + s.value + "\n\r";
}
}
}
else
{
strStatus += "No polling results for the conference. \n\r";
}
}
else

{

strStatus += "The conference not found. \n\r";

// Sample of program output: Sample ManageConference3.return.jpg

// ** Polling results for the conference 651077.

// ** 21.12.2009 14:18

// ** key: 1 / value: 2

// ** key: 2 / value: 0

// ** key: 3 / value: 1

// Polling charts: Sample ManageConference3.conference pollingCharts.jpg

return strStatus;
}
catch (Exception ex)
{
mLastError = "Error in " + this.GetType () .FullName +
".Sample ManageConference3: " + ex.Message;
return mLastError;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.conference_pollingCharts.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageConference3/Sample_ManageConference3.conference_pollingCharts.jpg

118

Web Services API
Programmer’s Guide

Sample of Calls Filtering, Mute the Calls, Dropping the Calls
(Sample_ManageCalll)

/*

Sample of Calls Filtering, Mute the Calls, Dropping the Calls
Let’s review the following scenario:

*/

we need to count how many calls are currently on the bridge;

for the selected subscriber we need to drop all participants calls if the call duration
greater than 10 minutes;

for remaining participants of the selected subscriber (with call duration less than 10
minutes) we need to mute their calls.

public String Sample ManageCalll ()

{

// Declare variables

long lngSessionsCount;

long lngDroppedCount;

long lngMutedCount;

Session[] participantsSessions;
String filterSubscriber;

String strStatus;

try

{

mLastError = "";
strStatus = "";

// See screenshot of the calls that were started on the bridge prior to the program
// start: calls before.jpg

// Count started calls

// We use negative conferenceld parameter and empty filter parameter to output all calls
IngSessionsCount = ws.getSessionsCount ("");

// XML that was sent to the server see here:

// Sample ManageCalll.getSessionsCount.all sent.xml

// XML that was received from the server see here:

// Sample ManageCalll.getSessionsCount.all received.xml

strStatus += "Number of started calls: " + lngSessionsCount.ToString() + ". \n\r";

// Find all subscriber's calls (sessions) where the role is participant
filterSubscriber = GetConferenceNumbersBySubscriberPIN ("admin") ;
// Click here to see GetConferenceNumbersBySubscriberPIN function implementation
if (!String.IsNullOrEmpty (filterSubscriber))

filterSubscriber = "conferenceNumber in (" + filterSubscriber + ") and ";
participantsSessions = ws.getSessions (0, 0, filterSubscriber + "role=2", "");
// XML that was sent to the server see here:
// Sample ManageCalll.getSessions.participants sent.xml
// XML that was received from the server see here:
// Sample ManageCalll.getSessions.participants received.xml

List<Session> getSessions(long offset,
long limit,
java.lang.String filter,
java.lang.String order)
throws ServerException,
AccessDeniedException,
ObjectNotFoundException

* This function returns list of Sessions (calls) which match the filter provided.

* There are two parameters offset and limit which help to implement paging on the web
* application. If this function is called from non admin Subscribers it will returns
* only Sessions visible for this account.

* If call doesn't present an accesscode yet - it is visible only by admin

* Parameters:

conferenceId - Conference Indentifier.
If parameter is less than zero Session objects for all Conference will be returned.
offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows. The criteria should be a simple sqgl

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/calls_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/calls_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessionsCount.all_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessionsCount.all_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessionsCount.all_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessionsCount.all_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessions.participants_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessions.participants_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessions.participants_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.getSessions.participants_received.xml

119 Web Services API
Programmer’s Guide

conditional statement started with one or more Session field names.
Acceptable operators: <= , >= , != , =, <, >, like , ilike, and
For example addressTo='1l2' or addressTo like'%2%' or duration >= 15.
order - A string specifying Session field name and sort direction.
For example "caller" or "caller desc".
The default direction is asc and can be omitted.
Empty string or null means no order.
* Accepted fields:
esessionId
esubscriberId
ecreated ('yyyy.MM.dd/hh:mm' format)
*joined ('yyyy.MM.dd/hh:mm' format) (works only when joined the conference)
eduration
estatus
erole (works only when joined the conference)
eisMuted (works only when joined the conference) true/false values
eaddressTo
caddressFrom
econferenceNumber (works only when joined the conference)
caccessCode (works only when joined the conference)
* Empty string or null means no filter.
* Returns:
list of Session objects
*/
if (participantsSessions != null && participantsSessions.Length > 0)
{
lngDroppedCount = 0;
lngMutedCount = 0;
foreach (Session s in participantsSessions)
{
if (s.duration > 600) // 600 seconds = 10 minutes
{
ws.hangupSession(s.sessionId) ;
// XML that was sent to the server see here:
// Sample ManageCalll.hangupSession.sent.xml
// XML that was received from the server see here:
// Sample ManageCalll.hangupSession.received.xml
lngDroppedCount++;

}

else

{
ws.muteSession (s.sessionId);
// XML that was sent to the server see here:
// Sample ManageCalll.muteSession.sent.xml
// XML that was received from the server see here:
// Sample ManageCalll.muteSession.received.xml
IngMutedCount++;

}

strStatus += "Number of participants' calls:

+ participantsSessions.Length.ToString() + ". \n\r";

strStatus += "Number of dropped participants' calls: " + lngDroppedCount.ToString/()
+ "o \n\zr";

strStatus += "Number of muted participants' calls: " + lngMutedCount.ToString()
+ ". \n\zr";

}

else

{

strStatus += "No participants' calls found. \n\r";

// See screenshot of the calls that were on the bridge after the program is finished:

// calls after.jpg

// In this case the program returns the following message: Sample ManageCalll.return.jpg
// ** Number of started calls: 3.

// ** Number of participants' calls: 2.

// ** Number of dropped participants' calls: 1.

// ** Number of muted participants' calls: 1.

return strStatus;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.hangupSession.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.hangupSession.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.hangupSession.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.hangupSession.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.muteSession.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.muteSession.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.muteSession.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.muteSession.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/calls_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/calls_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall1/Sample_ManageCall1.return.jpg

120 Web Services API
Programmer’s Guide

}
catch (Exception ex)
{
mLastError = "Error in " + this.GetType () .FullName +
".Sample ManageCalll: " + ex.Message;
return mLastError;

}

121 Web Services API
Programmer’s Guide

Sample of Setting Custom Name and Placing Calls on Hold

(Sample_ManageCall2)

/*
Sample of Setting Custom Name and Placing Calls on Hold
Let’s review the following scenario:

. for the conference with specific conference number we need to set custom name for the
host “conference moderator”;

. for the same conference we need to place all listeners and participants on hold.

*/

public void Sample ManageCall2 ()
{
// Declare constants
const int MODE_HOST = 1;
const int MODE_PARTICIPANT = 2;
const int MODE LISTENER = 3;
const long CONFERENCE NUMBER = 667788; // Default conference number for testing
// Declare variables
Session[] conferenceSessions;

try
{

mLastError =

(LTI
’

// See screenshot of the calls that were started on the bridge prior to

// the program start: calls before.jpg

// See screenshot of the conference calls that were started on the bridge prior to
// the program start: conference before.jpg

// Find all calls (sessions) for the conference number 667788
conferenceSessions = ws.getSessions (0, 0, "conferenceNumber="
+ CONFERENCE NUMBER.ToString(), "");
// XML that was sent to the server see here:
// Sample ManageCall2.getSessions.conferenceNumber sent.xml
// XML that was received from the server see here:
// Sample ManageCall2.getSessions.conferenceNumber received.xml

if (conferenceSessions != null && conferenceSessions.Length > 0)
{
foreach (Session s in conferenceSessions)
{
if (s.role == MODE HOST)
{
ws.setCustomName (s.sessionlId, "conference moderator");
// XML that was sent to the server see here:
// Sample ManageCall2.setCustomName.sent.xml
// XML that was received from the server see here:
// Sample ManageCall2.setCustomName.received.xml

else if (s.role == MODE_ PARTICIPANT || s.role == MODE_LISTENER)

ws.holdSession (s.sessionId);

// XML that was sent to the server see here:

// Sample ManageCall2.holdSession.sent.xml

// XML that was received from the server see here:
// Sample ManageCall2.holdSession.received.xml

// See screenshot of the calls that were on the bridge after

// the program is finished: calls after.jpg

// See screenshot of the conference calls that were on the bridge after
// the program is finished: conference after.jpg

return;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/calls_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/calls_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/conference_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/conference_before.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.getSessions.conferenceNumber_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.getSessions.conferenceNumber_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.getSessions.conferenceNumber_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.getSessions.conferenceNumber_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.setCustomName.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.setCustomName.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.setCustomName.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.setCustomName.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.holdSession.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.holdSession.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.holdSession.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/Sample_ManageCall2.holdSession.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/calls_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/calls_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/conference_after.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_ManageCall2/conference_after.jpg

122 Web Services API
Programmer’s Guide

catch (Exception ex)
{
mLastError = "Error in " + this.GetType () .FullName +
".Sample ManageCall2: " + ex.Message;

123 Web Services API
Programmer’s Guide

CDRs Management

Sample of Getting Conferences Historical Information

(Sample_InfoConferenceDR1)

/*
Sample of Getting Conferences Historical Information
Let’s review the following scenario:

. we need to count how many conferences were on the bridge from the beginning of the
month;
. for the selected subscriber we need to output his current month conferences information

(conference number, conference ID, date and time when the conference occurred, duration,
participants count, and info about recording URL if exists), ordered by conference
number and conference date.
*/
public String Sample InfoConferenceDR1 ()
{
// Declare variables
long lngConferencesCount;
ConferenceDR[] conferenceDRs;
DateTime startDate;
String filter;
String strInfo;

try

{
mLastError = "";
strInfo = "";

// Count how many conferences were on the bridge from the beginning of the month
startDate = new DateTime (DateTime.Now.Year, DateTime.Now.Month, 1);
lngConferencesCount = ws.getConferenceDRsCount ("created>=""
+ Utils.Date23qgl (startDate) + "'");
// XML that was sent to the server see here:
// Sample InfoConferenceDR1.getConferenceDRsCount.all sent.xml
// XML that was received from the server see here:
// Sample InfoConferenceDR1l.getConferenceDRsCount.all received.xml
strInfo += "Number of current month conferences: " + lngConferencesCount.ToString/ ()
+ ". \n\r";

// Find all current month conferences for the subscriber

filter = GetConferenceNumbersBySubscriberPIN ("admin") ;

// Click here to see GetConferenceNumbersBySubscriberPIN function implementation
if (String.IsNullOrEmpty (filter))

filter = "created>='" + Utils.Date2Sqgl (startDate) + "'";
else
filter = "created>='" + Utils.Date2Sqgl (startDate) + "' and conferenceNumber in ("

+ filter + ")";
conferenceDRs = ws.getConferenceDRs (0, 0, filter, "conferenceNumber, created");
// XML that was sent to the server see here:
// Sample InfoConferenceDR1.getConferenceDRs.sent.xml
// XML that was received from the server see here:
// Sample InfoConferenceDRl.getConferenceDRs.received.xml

List<ConferenceDR> getConferenceDRs (long offset,
long limit,
java.lang.String filter,
java.lang.String order)
* This function returns list of ConferenceDRs which are registered for the subscriber.
* For administrator it returns whole list of records.
* Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows.

The criteria should be a simple sgl conditional statement started
with one or more ConferenceDR field names.
Acceptable operators: <= , >= , =, =, <, >, like , ilike, and

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRsCount.all_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRsCount.all_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRsCount.all_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRsCount.all_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Common/GetConferenceNumbersBySubscriberPIN.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRs.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRs.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRs.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.getConferenceDRs.received.xml

124 Web Services API
Programmer’s Guide

For example:
conferencelId = 5424
duration > 300 and duration < 400
duration > 300 and conferenceNumber = 160
participantCnt > 2 and participantCnt < 22
created > '2010.08.07/00:00"
Empty string or null means no filter.
order - A string specifying ConferenceDR field name and sort direction.
For example "conferenceNumber" or "created desc".
The default direction is asc and can be omitted.
Empty string or null means no order.
* Accepted fields:
econferenceld
econferenceNumber
ecreated ('yyyy.MM.dd/hh:mm' format)
eduration
eparticipantCnt
* Returns:
list (array) of ConferenceDR objects
*/
if (conferenceDRs != null && conferenceDRs.Length > 0)
{
strInfo += "Number of current month conferences for the subscriber: "
+ conferenceDRs.Length.ToString () + ". \n\zr";
foreach (ConferenceDR cdr in conferenceDRs)
{
strInfo += cdr.conferenceNumber.ToString() + "\t"

+ cdr.conferenceId.ToString() + "\t"
cdr.created.ToShortDateString() + " " + cdr.created.ToShortTimeString ()
cdr.duration.ToString () + "\t"
cdr.participantCnt + "\t"
cdr.recordingUrl + "\n\r";

+ + o+ o+

}
}

else

{

strInfo += "No current month conferences for the subscriber found. \n\r";

// Sample of program output: Sample InfoConferenceDRl.return.jpg
// ** Number of current month conferences: 7.
// ** Number of current month conferences for the subscriber: 6.
// ** 651077 6 15/03/2010 5:01 568 3

// ** 651077 17 15/03/2010 6:40 179 2
// ** 667788 3 15/03/2010 12:50 33 1
// ** 667788 4 15/03/2010 1:16 573 2
// ** 667788 5 15/03/2010 1:27 11824 4 conferences/788/667788/record/5.wav
// ** 667788 8 17/03/2010 12:32 1389 4
return strInfo;
}
catch (Exception ex)
{
mLastError = "Error in " + this.GetType () .FullName +
".Sample InfoConferenceDRl: " + ex.Message;

return mLastError;

+

m\t"

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR1/Sample_InfoConferenceDR1.return.htm

125

Web Services API
Programmer’s Guide

Sample of the Shared Recording Generation (Sample InfoConferenceDR2)

/*

Sample of the Shared Recording Generation

In the previous sample

(sample InfoConferenceDR1l) we get conferences with recording.

Let's review the following scenario:
. we need to generate recording URL link,

that will allow user to download conference

recording without

authorization during the next hour

(for the conference with recording

*/

re
we
UR

conferenceld, that was found in the previous sample);
the ConferenceDR object information prior and after shared recording
see the differences in the object properties.

ferenced by the
need to output
L generation to

public String Sample InfoConferenceDR2 (long conferenceld)

{

// Declare constants

const Boolean ALLOW_ DOWNLOAD

true;

// Declare variables
ConferenceDR initialConferenceDR;
ConferenceDR finalConferenceDR;
DateTime expirePeriod;

String strInfo;

try
{
mLastError = "";
strInfo = "";
// Get initial the ConferenceDR object for the conference referenced by identifier
initialConferenceDR = ws.getConferenceDR (conferenceld) ;
// XML that was sent to the server see here:
// Sample InfoConferenceDR2.getConferenceDR.initial sent.xml
// XML that was received from the server see here:
// Sample InfoConferenceDR2.getConferenceDR.initial received.xml
if (initialConferenceDR != null)
{
// Calculate the period of time over which the shared link will be invalidated
expirePeriod = DateTime.Now.AddHours (1) ;
// Share the conference recording - generate URL to download
ws.shareRecording (conferenceld, expirePeriod, ALLOW DOWNLOAD) ;
// XML that was sent to the server see here:
// Sample InfoConferenceDR2.shareRecording.sent.xml
// XML that was received from the server see here:
// Sample InfoConferenceDR2.shareRecording.received.xml
// Get final the ConferenceDR object for the conference referenced by identifier
finalConferenceDR = ws.getConferenceDR (conferenceld);
// XML that was sent to the server see here:
// Sample InfoConferenceDR2.getConferenceDR.final sent.xml
// XML that was received from the server see here:
// Sample InfoConferenceDR2.getConferenceDR.final received.xml
strInfo = "The conference " + conferenceId.ToString/()
+ " recording can be download using URL: "
+ finalConferenceDR.sharedRecordingUrl + " till "
+ finalConferenceDR.expirePeriod.ToString() + ". \n\r";
}
else
{
strInfo = "The conference with ID " + conferenceId.ToString() + " not found. \n\r";
}
// Sample of program output: Sample InfoConferenceDR2.return.jpg
// ** The conference 39744 recording can be download using URL:
// ** conferences/-17-65-6716-42-97111-52-112-17-65-6712627-17-65-67188316-17-65-67 .wav

** £111 19/03/2010 13:24:37.

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.initial_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.initial_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.initial_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.initial_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.shareRecording.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.shareRecording.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.shareRecording.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.shareRecording.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.final_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.final_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.final_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.getConferenceDR.final_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoConferenceDR2/Sample_InfoConferenceDR2.return.jpg

126 Web Services API
Programmer’s Guide

return strInfo;
}
catch (Exception ex)
{
mLastError = "Error in " + this.GetType () .FullName +
".Sample InfoConferenceDR2: " + ex.Message;
return mLastError;

127

Web Services API
Programmer’s Guide

Sample of Getting Calls Historical Information (Sample InfoSessionDR1)

/*

Sample of Getting Calls Historical Information
Let’s review the following scenario:

*/

we need to count how many calls were on the bridge from the beginning of the month for
the specific conference number;

for the specific conference number we need to output current month conference calls
information (conference number, conference ID, date and time when the call occurred,
duration, called number, calling number, custom name, disconnect reason);

if number of calls to output greater than 5, we should implement paging and output 5
calls on the page.

public String Sample InfoSessionDRI ()

{

// Declare constants

const long PAGE SIZE = 5; // Page size to display portion of the SessionDR objects
const long CONFERENCE NUMBER = 667788; // The conference number to filter the SessionDR objects
// Declare variables

long lngSessionsCount;

SessionDR[] sessionDRs;

DateTime startDate;

String filter;

String strInfo;

try

{

mLastError = "";
strInfo = "";

// Generate filter that should be user to retrieve SessionDR objects

startDate = new DateTime (DateTime.Now.Year, DateTime.Now.Month, 1);

filter = "created>='" + Utils.Date2Sqgl (startDate) + "' and conferenceNumber="
+ CONFERENCEiNUMBER.ToString();

// Count how many calls were on the bridge from the beginning of the month

// for the specific conference number

IngSessionsCount = ws.getSessionDRsCount (filter);

// XML that was sent to the server see here:

// Sample InfoSessionDR1.getSessionDRsCount.sent.xml

// XML that was received from the server see here:

// Sample InfoSessionDR1.getSessionDRsCount.received.xml

strInfo += "Number of current month calls for the conference:
+ lngSessionsCount.ToString() + ". \n\r";

if (lngSessionsCount > 0)
{
for (long page = 0; page * PAGE SIZE < lngSessionsCount; page++)
{
// Find all current month calls for the specific conference number
sessionDRs = ws.getSessionDRs (page * PAGE_SIZE, PAGE SIZE, filter, "");
// This sample runs the loop three times and outputs three pages:
// Page #1. XML that was sent to the server see here:
// Sample InfoSessionDR1.getSessionDRs.pagel sent.xml
// Page #1. XML that was received from the server see here:
// Sample InfoSessionDRl.getSessionDRs.pagel received.xml
// Page #2. XML that was sent to the server see here:
// Sample InfoSessionDRl.getSessionDRs.page2 sent.xml
// Page #2. XML that was received from the server see here:
// Sample InfoSessionDRl.getSessionDRs.page2 received.xml
// Page #3. XML that was sent to the server see here:
// Sample InfoSessionDRl.getSessionDRs.page3 sent.xml
// Page #3. XML that was received from the server see here:
// Sample InfoSessionDRl.getSessionDRs.page3 received.xml

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRsCount.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRsCount.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRsCount.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRsCount.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page1_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page1_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page1_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page1_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page2_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page2_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page2_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page2_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page3_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page3_sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page3_received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.getSessionDRs.page3_received.xml

128

/*
Li

* This function returns list of SessionDRs allowed to view.

*

*

*

*/
if

{

st<SessionDR> getSessionDRs (long offset,
long limit,
java.lang.String filter,
java.lang.String order)

For administrator it returns whole list of records.
Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows.

Web Services API
Programmer’s Guide

The criteria should be a simple sgl conditional statement started with one

or more SessionDR field names.

Acceptable operators: <= , >= , =, =, <, >, like

For example:

conferenceld = 5424

created > '2010.08.07/00:00"

Empty string or null means no filter.

ilike, and

order - A string specifying SessionDR field name and sort direction.

For example "conferenceNumber" or "created desc".
The default direction is asc and can be omitted.
Empty string or null means no order.

Accepted fields:
econferenceld
econferenceNumber
ecreated ('yyyy.MM.dd/hh:mm' format)
eduration
erole
*joined
*customName
ecaller
ecallee
caddressFrom
caddressTo
econferenceNumber
caccessCode
edisconnectReason

Returns:
list (array) of SessionDR objects

(sessionDRs != null && sessionDRs.Length > 0)

strInfo += "Page #" + (page + 1).ToString()
+ ". Calls (SessionDR objects) on the page:
+ sessionDRs.Length.ToString() + ". \n\r";
foreach (SessionDR sdr in sessionDRs)
{
strInfo += sdr.conferenceNumber.ToString() + "\t"
+ sdr.conferenceId.ToString() + "\t"
sdr.created.ToShortDateString () + " "
sdr.created.ToShortTimeString () + "\t"
sdr.duration.ToString () + "\t"
sdr.callee + "\t"
sdr.caller + "\t"
sdr.customName + "\t"
sdr.disconnectReason + "\n\r";

+ o+ o+ o+ o+

strInfo += "No current month calls for the conference found. \n\r";

129

// Sample of program output:

Web Services API
Programmer’s Guide

Sample InfoSessionDRl.return.jpg

// ** Number of current month calls for the conference: 11.

// ** Page #1. Calls (SessionDR objects) on the page: 5.

// ** 667788 3 15/03/2010 12:50 33 12 admin Normal

// ** 667788 4 15/03/2010 1:25 28 12 admin 'Guest' MP is unavailable

// ** 667788 4 15/03/2010 1:16 573 12 admin MP is unavailable

// ** 667788 5 15/03/2010 1:33 244 REC SERVER 12 Normal

// ** 667788 5 15/03/2010 1:27 11824 12 admin Dropped by moderator
// ** Page #2. Calls (SessionDR objects) on the page: 5.

// ** 667788 5 15/03/2010 1:27 11810 12 unknown Dropped by moderator
// ** 667788 5 15/03/2010 1:27 11797 12 admin Guest Dropped by moderator
// ** 667788 8 17/03/2010 12:35 975 12 admin Guest Dropped by moderator
// ** 667788 8 17/03/2010 12:32 1389 12 admin conference moderator Dropped...
// ** 667788 8 17/03/2010 12:53 146 12 admin 'Guest' Dropped by moderator
// ** Page #3. Calls (SessionDR objects) on the page: 1.

/] **

667788 8 17/03/2010 12

42 783 12 unknown Dropped by moderator

return strInfo;

}

catch (Exception ex)

{

mLastError = "Error in " + this.GetType () .FullName +
".Sample InfoSessionDRl: " + ex.Message;
return mLastError;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR1/Sample_InfoSessionDR1.return.htm

130 Web Services API
Programmer’s Guide

Sample of Historical Calls Filtering (Sample_InfoSessionDR2)

/*

Sample of Historical Calls Filtering

Let’s review the following scenario:

. for the current month we need to output all calls that were connected to the
conferences excluding service calls to the recording server initiated by bridge
(for instance we should output calling number, called number, conference number,
conference identifier, date/time when the call was started,
and how long the call was connected to the conference).

*/

public String Sample InfoSessionDR2 ()

{

// Declare variables
SessionDR[] sessionDRs;
DateTime startDate;
String filter;

String strInfo;

try

{
mLastError =
strInfo = "";

we o,
’

// Generate filter that should be user to retrieve SessionDR objects
startDate = new DateTime (DateTime.Now.Year, DateTime.Now.Month, 1);

filter = "created>='" + startDate.ToString("yyyy.MM.dd") + "/00:00"'";
filter += " and conferenceNumber!=0";
filter += " and callee!='REC_ SERVER'";

// Get all calls based on the specified criteria
sessionDRs = ws.getSessionDRs (0, 0, filter, "created");
// XML that was sent to the server see here:
// Sample InfoSessionDR2.getSessionDRs.sent.xml
// XML that was received from the server see here:
// Sample InfoSessionDR2.getSessionDRs.received.xml
/*
List<SessionDR> getSessionDRs (long offset,
long limit,
java.lang.String filter,
java.lang.String order)
* This function returns list of SessionDRs allowed to view.
* For administrator it returns whole list of records.
* Parameters:

offset - zero based offset in recordset.
limit - maximum number of objects to return.
filter - The criteria to use to filter the rows.

The criteria should be a simple sgl conditional statement started with one or
more SessionDR field names.
Acceptable operators: <= , >= , =, =, <, >, like , ilike, and
For example:
conferencelId = 5424
created > '2010.08.07/00:00"
Empty string or null means no filter.
order - A string specifying SessionDR field name and sort direction.
For example "conferenceNumber" or "created desc".
The default direction is asc and can be omitted.
Empty string or null means no order.
* Accepted fields:
econferenceld
econferenceNumber
ecreated ('yyyy.MM.dd/hh:mm' format)
eduration
erole
*joined
scustomName
ecaller
ecallee

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.getSessionDRs.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.getSessionDRs.sent.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.getSessionDRs.received.xml
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.getSessionDRs.received.xml

131 Web Services API
Programmer’s Guide

caddressFrom
caddressTo
econferenceNumber
caccessCode
edisconnectReason
* Returns:
list (array) of SessionDR objects
*/
if (sessionDRs != null && sessionDRs.Length > 0)
{
strInfo += "Number of current month calls that match to the specified criteria: ";
strInfo += sessionDRs.Length.ToString() + ".\n\zr";
strInfo += "callee\tcaller\tconferenceNumber\tconferenceIld\tcreated\tin conference\n\r";
foreach (SessionDR sdr in sessionDRs)
{
strinfo += sdr.callee + "\t"
+ sdr.caller + "\t"
sdr.conferenceNumber.ToString () + "\t"
sdr.conferencelId.ToString() + "\t"
sdr.created.ToShortDateString() + " " + sdr.created.ToShortTimeString() + "\t"
(sdr.created.AddSeconds ((Double) sdr.duration) -
sdr.joined) .TotalSeconds.ToString () + "\n\r";

+ + o+ +

}
}
else

{

strInfo += "No current month calls that match to the specified criteria. \n\r";

// Sample of program output: Sample InfoSessionDR2.return.jpg
// ** Number of current month calls that match to the specified criteria: 18.

// ** callee caller conferenceNumber conferenceld created in conference
// ** 8665080012 Moderator-Console 758288 2 10/03/2010 7:08 267

// ** 8665080012 admin 758288 2 10/03/2010 7:10 93

// ** 8665080012 admin 758288 2 10/03/2010 7:12 28

// ** 12 admin 667788 3 15/03/2010 12:50 31

F e

return strInfo;
}
catch (Exception ex)
{
mLastError = "Error in " + this.GetType () .FullName +
".Sample InfoSessionDR2: " + ex.Message;
return mLastError;

http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.jpg
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm
http://docs.wydevoice.com/3_1/html/WebServiceAPI/Samples/Sample_InfoSessionDR2/Sample_InfoSessionDR2.return.htm

132 Web Services API
Programmer’s Guide

Appendix B: Support Resources

If you have difficulty with this guide and any of the procedures listed herein, please contact
us using the following support resources.

Support Documentation

In addition to this Guide, you may obtain other WYDE Voice documentation from WYDE
Voice or from the WYDE Voice documentation Web site: http://docs.wydevoice.com/.

Web Support

Our support website is available 24 hours a day, 7 days a week, and 365 days a year at
http://www.wydevoice.com. You may download patches, support documentation and other
technical support information.

Telephone Support

For difficulties with any procedures described in this Guide, please contact us at 866-508-
9020 during our normal phone support hours of 7:00 am to 6:00 pm Pacific Standard Time
(PST). An engineer will respond to your inquiry within 24 hours.

Email Support

You may also email us your questions at support@wydevoice.com. We will respond to
your question within 24 hours.

http://docs.wydevoice.com/
http://www.wydevoice.com/
mailto:support@wydevoice.com

	Chapter 1: Introduction
	Assumed Skills
	Web Services
	Definitions

	Chapter 2: Data Structures
	General Data Structure
	Data Classes (Entities)
	Subscriber
	Conference Account – Conference User (Confuser)
	Conference Info (ConfInfo)
	DNIS
	 DNIS Alias (DnisAlias)
	Call Flow (CallFlow)
	Attribute
	Conference
	Operator Status (OperatorStatus)
	ConferenceDR
	Custom Extension (CustomExtension)
	Polling Result (PollingResult)
	Operator’s Statistic (OperatorStatistic)
	Session
	SessionDR
	SubSessionDR
	SessionEvent
	DTMF Event (DtmfEvent)
	Subscriber Conference (SubscriberConference)
	Dialout Subscriber (DialoutSubscriber)

	Chapter 3: Samples of Functions
	WYDE Web Services Initialization
	Sample of WYDE Web Services Initialization

	Web Methods’ XML Requests and Responses
	Sample of XML for Function with Multiple Parameters Sent and List of Objects Received
	Sample of XML for Function with the Object Parameter Sent and the Object Received

	Subscribers Management
	Sample of Subscriber and his Conference Accounts Creation
	Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications
	Sample of Subscribers Filtering and Deletion
	Sample of Getting Conference Users Information

	Conferences and Calls Management
	Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences
	Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A Sessions and Conference Recording
	Sample of Conference Polling Sessions
	Sample of Calls Filtering, Mute the Calls, Dropping the Calls
	Sample of Setting Custom Name and Placing Calls on Hold

	CDRs Management
	Sample of Getting Conferences Historical Information
	Sample of the Shared Recording Generation
	Sample of Getting Calls Historical Information
	Sample of Historical Calls Filtering

	Active Speaker Notification
	Storage Library
	Showing Folder Content for Conference Files
	File upload
	Files management

	Chapter 4: Function Reference
	Subscribers Management
	Subscribers’ Conference Users Management
	Conference Info Management
	Conferences and Calls Management
	Subscribers’ Conferences Management
	CDRs Management
	Call Flow and DNIS Management
	Backend and Frontend Services Management
	Exceptions
	Constants

	Appendix A: Code Samples
	WYDE Web Services Initialization
	Sample of WYDE Web Services Initialization
	app.config

	Web Methods’ XML Requests and Responses
	Sample of XML Request for Function with Multiple Parameters Sent
	Sample of XML Response for Function with List of Objects Received
	Sample of XML Request for Function with the Object Parameter Sent
	Sample of XML Response for Function with the Object Received

	Subscribers Management
	Sample of Subscriber and his Conference Accounts Creation (Sample_ManageSubscriber1)
	Sample of Subscribers Filtering, Modifications, Conference Accounts Modifications (Sample_ManageSubscriber2)
	Sample of Subscribers Filtering and Deletion (Sample_ManageSubscriber3)
	Sample of Getting Conference Users Information (Sample_ManageConfuser1)

	Conferences and Calls Management
	Sample of Conferences Filtering, Changes Secure Mode, Dropping the Conferences (Sample_ManageConference1)
	Sample of Placing the Entire Conference on Hold, Starting and Stopping Q&A Sessions and Conference Recording (Sample_ManageConference2)
	Sample of Conference Polling Sessions (Sample_ManageConference3)
	Sample of Calls Filtering, Mute the Calls, Dropping the Calls (Sample_ManageCall1)
	Sample of Setting Custom Name and Placing Calls on Hold (Sample_ManageCall2)

	CDRs Management
	Sample of Getting Conferences Historical Information (Sample_InfoConferenceDR1)
	Sample of the Shared Recording Generation (Sample_InfoConferenceDR2)
	Sample of Getting Calls Historical Information (Sample_InfoSessionDR1)
	Sample of Historical Calls Filtering (Sample_InfoSessionDR2)

	Appendix B: Support Resources
	Support Documentation
	Web Support
	Telephone Support
	Email Support

